Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 024206    DOI: 10.1088/1674-1056/ac3507
RAPID COMMUNICATION Prev   Next  

Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator

Qilin Zheng(郑骑林)1,†, Jiacheng Liu(刘嘉成)2,†, Chao Wu(吴超)1, Shichuan Xue(薛诗川)1, Pingyu Zhu(朱枰谕)1, Yang Wang(王洋)1, Xinyao Yu(于馨瑶)1, Miaomiao Yu(余苗苗)1, Mingtang Deng(邓明堂)1, Junjie Wu(吴俊杰)1, and Ping Xu(徐平)1,3,‡
1 Institute for Quantum Information and State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073, China;
2 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China;
3 National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
Abstract  High-dimensional entanglement provides valuable resources for quantum technologies, including quantum communication, quantum optical coherence tomography, and quantum computing. Obtaining a high brightness and dimensional entanglement source has significant value. Here we utilize a tunable asymmetric Mach-Zehnder interferometer coupled silicon microring resonator with 100 GHz free spectral range to achieve this goal. With the strategy of the tunable coupler, the dynamical and extensive tuning range of quality factors of the microring can be obtained, and then the biphoton pair generation rate can be optimized. By selecting and characterizing 28 pairs from a more than 30-pair modes biphoton frequency comb, we obtain a Schmidt number of at least 23.4 and on-chip pair generation rate of 19.9 MHz/mW2 under a low on-chip pump power, which corresponds to 547 dimensions Hilbert space in frequency freedom. These results will prompt the wide applications of quantum frequency comb and boost the further large density and scalable on-chip quantum information processing.
Keywords:  silicon microring resonator      quantum entanglement      biphoton frequency comb  
Received:  28 October 2021      Revised:  31 October 2021      Accepted manuscript online:  01 November 2021
PACS:  42.50.-p (Quantum optics)  
  42.65.-k (Nonlinear optics)  
  42.65.Lm (Parametric down conversion and production of entangled photons)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2019YFA0308700 and 2017YFA0303700), the National Natural Science Foundation of China (Grant Nos. 61632021 and 11690031), and the Open Funds from the State Key Laboratory of High Performance Computing of China (HPCL, National University of Defense Technology).
Corresponding Authors:  Ping Xu     E-mail:  pingxu520@nju.edu.cn

Cite this article: 

Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平) Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator 2022 Chin. Phys. B 31 024206

[1] Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y, Jiang X, Gan L, Yang G, You L, Wang Z, Li L, Liu N L, Lu C Y and Pan J W 2020 Science 370 1460
[2] Xu F H, Ma X F, Zhang Q, Lo H K and Pan J W 2020 Rev. Mod. Phys. 92 025002
[3] Wu C, Liu Y W, Gu X W, Yu X X, Kong Y C, Wang Y, Qiang X G, Wu J J, Zhu Z H, Yang X J and Xu P 2020 Sci. China:Phys. Mech. Astron. 63 220362
[4] Hu X M, Guo Y, Liu B H, Huang Y F, Li C F and Guo G C 2018 Sci. Adv. 4 eaat9304
[5] Abouraddy A F, Nasr M B, Saleh B E, Sergienko A V and Teich M C 2002 Phys. Rev. A 65 053817
[6] Reimer C, Sciara S, Roztocki P, Islam M, Cortes L R, Zhang Y, Fischer B, Loranger S, Kashyap R, Cino A, Chu S T, Little B E, Moss D J, Caspani L, Munro W J, Azana J, Kues M and Morandotti R 2019 Nat. Phys. 15 148
[7] Menicucci N C 2014 Phys. Rev. Lett. 112 120504
[8] Wang J, Paesani S, Ding Y, Santagati R, Skrzypczyk P, Salavrakos A, Tura J, Augusiak R, Mančinska L, Bacco D, Bonneau D, Silverstone J W, Gong Q, Acín A, Rottwitt K, Oxenlowe L K, O'Brien J L, Laing A and Thompson M G 2018 Science 360 285
[9] Kues M, Reimer C, Lukens J M, Munro W J, Weiner A M, Moss D J and Morandotti R 2019 Nat. Photon. 13 170
[10] Zhang Q Y, Xu P and Zhu S N 2018 Chin. Phys. B 27 054207
[11] Lu H H, Lukens J M, Peters N A, Williams B P, Weiner A M and Lougovski P 2018 Optica 5 1455
[12] Imany P, Jaramillo-Villegas J A, Alshaykh M S, Lukens J M, Odele O D, Moore A J, Leaird D E, Qi M and Weiner A M 2019 NPJ Quantum Inf. 5 1
[13] Fedorov M and Miklin N 2014 Contemp. Phys. 55 94
[14] Gaeta A L, Lipson M and Kippenberg T J 2019 Nat. Photon. 13 158
[15] Shi X, Guo K, Christensen J B, Castaneda M A U, Liu X, Ou H and Rottwitt K 2019 Phys. Rev. Appl. 12 034053
[16] Kumar R, Ong J R, Savanier M and Mookherjea S 2014 Nat. Commun. 5 1
[17] Mazeas F, Traetta M, Bentivegna M, Kaiser F, Aktas D, Zhang W, Ramos C A, Ngah L A, Lunghi T, Picholle E, Belabas-Plougonven N, Roux X L, Cassan E, Marris-Morini D, Vivien L, Sauder G, Labonte L and Tanzilli S 2016 Opt. Express 24 28731
[18] Imany P, Jaramillo-Villegas J A, Odele O D, Han K, Leaird D E, Lukens J M, Lougovski P, Qi M and Weiner A M 2018 Opt. Express 26 1825
[19] Yin Z, Sugiura K, Takashima H, Okamoto R, Qiu F, Yokoyama S and Takeuchi S 2021 Opt. Express 29 4821
[20] Chang K C, Cheng X, Sarihan M C, Vinod A K, Lee Y S, Zhong T, Gong Y X, Xie Z, Shapiro J H, Wong F N and Wei W C 2021 NPJ Quantum Inf. 7 48
[21] Xie Z, Zhong T, Shrestha S, Xu X, Liang J, Gong Y X, Bienfang J C, Restelli A, Shapiro J H, Wong F N and Wong C W 2015 Nat. Photon. 9 536
[22] Kues M, Reimer C, Roztocki P, Cortes L R, Sciara S, Wetzel B, Zhang Y, Cino A, Chu S T, Little B E, Moss D J, Caspani L and Azana J 2017 Nature 546 622
[23] Lu X, Rogers S, Gerrits T, Jiang W C, Nam S W and Lin Q 2016 Optica 3 1331
[24] Vernon Z, Liscidini M and Sipe J E 2016 Opt. Lett. 41 788
[25] Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P and Lonar M 2018 Nature 562 101
[26] He M, Xu M, Ren Y, Jian J, Ruan Z, Xu Y, Gao S, Sun S, Wen X, Zhou L, Liu L, Guo C, Chen H, Yu S, Liu L and Cai X 2019 Nat. Photon. 13 359
[27] Barbarossa G, Matteo A M and Armenise M N 1995 J. Light. Technol. 13 148
[28] Chen L, Sherwood-Droz N and Lipson M 2007 Opt. Lett. 32 3361
[29] Wang J and Dai D 2010 Opt. Lett. 35 4229
[30] Tison C, Steidle J, Fanto M, Wang Z, Mogent N, Rizzo A, Preble S and Alsing P 2017 Opt. Express 25 33088
[31] Guo K, Shi X, Wang X, Yang J, Ding Y, Ou H and Zhao Y 2018 Photon. Res. 6 587
[32] Grassani D, Azzini S, Liscidini M, Galli M, Strain M J, Sorel M, Sipe J and Bajoni D 2015 Optica 2 88
[33] Silverstone J W, Santagati R, Bonneau D, Strain M J, Sorel M, O'Brien J L and Thompson M G 2015 Nat. Commun. 6 1
[34] Wang C, Zhang M, Yu M, Zhu R, Hu H and Loncar M 2019 Nat. Commun. 10 1
[35] Benedikovic D, Berciano M, Alonso-Ramos C, Le Roux X, Cassan E, Marris-Morini D and Vivien L 2017 Opt. Express 25 19468
[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[3] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[4] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[5] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[6] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[7] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[8] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[9] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[10] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[11] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[12] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), and Yin Zhong(钟寅)†. Chin. Phys. B, 2020, 29(10): 107301.
[13] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
[14] Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis
Zhi-Yuan Li(李志远). Chin. Phys. B, 2019, 28(6): 060301.
[15] Entropy of field interacting with two two-qubit atoms
Tang-Kun Liu(刘堂昆), Yu Tao(陶宇), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2018, 27(9): 090303.
No Suggested Reading articles found!