|
|
Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator |
Qilin Zheng(郑骑林)1,†, Jiacheng Liu(刘嘉成)2,†, Chao Wu(吴超)1, Shichuan Xue(薛诗川)1, Pingyu Zhu(朱枰谕)1, Yang Wang(王洋)1, Xinyao Yu(于馨瑶)1, Miaomiao Yu(余苗苗)1, Mingtang Deng(邓明堂)1, Junjie Wu(吴俊杰)1, and Ping Xu(徐平)1,3,‡ |
1 Institute for Quantum Information and State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073, China; 2 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; 3 National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China |
|
|
Abstract High-dimensional entanglement provides valuable resources for quantum technologies, including quantum communication, quantum optical coherence tomography, and quantum computing. Obtaining a high brightness and dimensional entanglement source has significant value. Here we utilize a tunable asymmetric Mach-Zehnder interferometer coupled silicon microring resonator with 100 GHz free spectral range to achieve this goal. With the strategy of the tunable coupler, the dynamical and extensive tuning range of quality factors of the microring can be obtained, and then the biphoton pair generation rate can be optimized. By selecting and characterizing 28 pairs from a more than 30-pair modes biphoton frequency comb, we obtain a Schmidt number of at least 23.4 and on-chip pair generation rate of 19.9 MHz/mW2 under a low on-chip pump power, which corresponds to 547 dimensions Hilbert space in frequency freedom. These results will prompt the wide applications of quantum frequency comb and boost the further large density and scalable on-chip quantum information processing.
|
Received: 28 October 2021
Revised: 31 October 2021
Accepted manuscript online: 01 November 2021
|
PACS:
|
42.50.-p
|
(Quantum optics)
|
|
42.65.-k
|
(Nonlinear optics)
|
|
42.65.Lm
|
(Parametric down conversion and production of entangled photons)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2019YFA0308700 and 2017YFA0303700), the National Natural Science Foundation of China (Grant Nos. 61632021 and 11690031), and the Open Funds from the State Key Laboratory of High Performance Computing of China (HPCL, National University of Defense Technology). |
Corresponding Authors:
Ping Xu
E-mail: pingxu520@nju.edu.cn
|
Cite this article:
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平) Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator 2022 Chin. Phys. B 31 024206
|
[1] Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y, Jiang X, Gan L, Yang G, You L, Wang Z, Li L, Liu N L, Lu C Y and Pan J W 2020 Science 370 1460
[2] Xu F H, Ma X F, Zhang Q, Lo H K and Pan J W 2020 Rev. Mod. Phys. 92 025002
[3] Wu C, Liu Y W, Gu X W, Yu X X, Kong Y C, Wang Y, Qiang X G, Wu J J, Zhu Z H, Yang X J and Xu P 2020 Sci. China:Phys. Mech. Astron. 63 220362
[4] Hu X M, Guo Y, Liu B H, Huang Y F, Li C F and Guo G C 2018 Sci. Adv. 4 eaat9304
[5] Abouraddy A F, Nasr M B, Saleh B E, Sergienko A V and Teich M C 2002 Phys. Rev. A 65 053817
[6] Reimer C, Sciara S, Roztocki P, Islam M, Cortes L R, Zhang Y, Fischer B, Loranger S, Kashyap R, Cino A, Chu S T, Little B E, Moss D J, Caspani L, Munro W J, Azana J, Kues M and Morandotti R 2019 Nat. Phys. 15 148
[7] Menicucci N C 2014 Phys. Rev. Lett. 112 120504
[8] Wang J, Paesani S, Ding Y, Santagati R, Skrzypczyk P, Salavrakos A, Tura J, Augusiak R, Mančinska L, Bacco D, Bonneau D, Silverstone J W, Gong Q, Acín A, Rottwitt K, Oxenlowe L K, O'Brien J L, Laing A and Thompson M G 2018 Science 360 285
[9] Kues M, Reimer C, Lukens J M, Munro W J, Weiner A M, Moss D J and Morandotti R 2019 Nat. Photon. 13 170
[10] Zhang Q Y, Xu P and Zhu S N 2018 Chin. Phys. B 27 054207
[11] Lu H H, Lukens J M, Peters N A, Williams B P, Weiner A M and Lougovski P 2018 Optica 5 1455
[12] Imany P, Jaramillo-Villegas J A, Alshaykh M S, Lukens J M, Odele O D, Moore A J, Leaird D E, Qi M and Weiner A M 2019 NPJ Quantum Inf. 5 1
[13] Fedorov M and Miklin N 2014 Contemp. Phys. 55 94
[14] Gaeta A L, Lipson M and Kippenberg T J 2019 Nat. Photon. 13 158
[15] Shi X, Guo K, Christensen J B, Castaneda M A U, Liu X, Ou H and Rottwitt K 2019 Phys. Rev. Appl. 12 034053
[16] Kumar R, Ong J R, Savanier M and Mookherjea S 2014 Nat. Commun. 5 1
[17] Mazeas F, Traetta M, Bentivegna M, Kaiser F, Aktas D, Zhang W, Ramos C A, Ngah L A, Lunghi T, Picholle E, Belabas-Plougonven N, Roux X L, Cassan E, Marris-Morini D, Vivien L, Sauder G, Labonte L and Tanzilli S 2016 Opt. Express 24 28731
[18] Imany P, Jaramillo-Villegas J A, Odele O D, Han K, Leaird D E, Lukens J M, Lougovski P, Qi M and Weiner A M 2018 Opt. Express 26 1825
[19] Yin Z, Sugiura K, Takashima H, Okamoto R, Qiu F, Yokoyama S and Takeuchi S 2021 Opt. Express 29 4821
[20] Chang K C, Cheng X, Sarihan M C, Vinod A K, Lee Y S, Zhong T, Gong Y X, Xie Z, Shapiro J H, Wong F N and Wei W C 2021 NPJ Quantum Inf. 7 48
[21] Xie Z, Zhong T, Shrestha S, Xu X, Liang J, Gong Y X, Bienfang J C, Restelli A, Shapiro J H, Wong F N and Wong C W 2015 Nat. Photon. 9 536
[22] Kues M, Reimer C, Roztocki P, Cortes L R, Sciara S, Wetzel B, Zhang Y, Cino A, Chu S T, Little B E, Moss D J, Caspani L and Azana J 2017 Nature 546 622
[23] Lu X, Rogers S, Gerrits T, Jiang W C, Nam S W and Lin Q 2016 Optica 3 1331
[24] Vernon Z, Liscidini M and Sipe J E 2016 Opt. Lett. 41 788
[25] Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P and Lonar M 2018 Nature 562 101
[26] He M, Xu M, Ren Y, Jian J, Ruan Z, Xu Y, Gao S, Sun S, Wen X, Zhou L, Liu L, Guo C, Chen H, Yu S, Liu L and Cai X 2019 Nat. Photon. 13 359
[27] Barbarossa G, Matteo A M and Armenise M N 1995 J. Light. Technol. 13 148
[28] Chen L, Sherwood-Droz N and Lipson M 2007 Opt. Lett. 32 3361
[29] Wang J and Dai D 2010 Opt. Lett. 35 4229
[30] Tison C, Steidle J, Fanto M, Wang Z, Mogent N, Rizzo A, Preble S and Alsing P 2017 Opt. Express 25 33088
[31] Guo K, Shi X, Wang X, Yang J, Ding Y, Ou H and Zhao Y 2018 Photon. Res. 6 587
[32] Grassani D, Azzini S, Liscidini M, Galli M, Strain M J, Sorel M, Sipe J and Bajoni D 2015 Optica 2 88
[33] Silverstone J W, Santagati R, Bonneau D, Strain M J, Sorel M, O'Brien J L and Thompson M G 2015 Nat. Commun. 6 1
[34] Wang C, Zhang M, Yu M, Zhu R, Hu H and Loncar M 2019 Nat. Commun. 10 1
[35] Benedikovic D, Berciano M, Alonso-Ramos C, Le Roux X, Cassan E, Marris-Morini D and Vivien L 2017 Opt. Express 25 19468 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|