Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 117105    DOI: 10.1088/1674-1056/ac2805
Special Issue: SPECIAL TOPIC — Two-dimensional magnetic materials and devices
SPECIAL TOPIC—Two-dimensional magnetic materials and devices Prev   Next  

Carrier and magnetism engineering for monolayer SnS2 by high throughput first-principles calculations

Qing Zhan(詹庆)1,†, Xiaoguang Luo(罗小光)2,†, Hao Zhang(张皓)1, Zhenxiao Zhang(张振霄)1, Dongdong Liu(刘冬冬)1, and Yingchun Cheng(程迎春)1,‡
1 Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China;
2 Frontiers Science Center for Flexible Electronics(FSCFE), Shaanxi Institute of Flexible Electronics(SIFE) & Shaanxi Institute of Biomedical Materials and Engineering(SIBME), Northwestern Polytechnical University(NPU), Xi'an 710129, China
Abstract  Two-dimensional (2D) semiconducting tin disulfide (SnS2) has been widely used for optoelectronic applications. To functionalize SnS2 for extending its application, we investigate the stability, electronic and magnetic properties of substitutional doping by high throughput first-principles calculations. There are a lot of elements that can be doped in monolayer SnS2. Nonmetal in group A can introduce p-type and n-type carriers, while most metals in group A can only lead to p-type doping. Not only 3d, but also 4d and 5d transition metals in groups VB to VⅢB9 can introduce magnetism in SnS2, which is potentially applicable for spintronics. This study provides a comprehensive view of functionalization of SnS2 by substitutional doping, which will guide further experimental realization.
Keywords:  SnS2      high throughput first-principles calculations      carrier      magnetism  
Received:  30 April 2021      Revised:  15 September 2021      Accepted manuscript online:  18 September 2021
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  74.62.Dh (Effects of crystal defects, doping and substitution)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 91833302).
Corresponding Authors:  Yingchun Cheng     E-mail:  iamyccheng@njtech.edu.cn

Cite this article: 

Qing Zhan(詹庆), Xiaoguang Luo(罗小光), Hao Zhang(张皓), Zhenxiao Zhang(张振霄), Dongdong Liu(刘冬冬), and Yingchun Cheng(程迎春) Carrier and magnetism engineering for monolayer SnS2 by high throughput first-principles calculations 2021 Chin. Phys. B 30 117105

[1] Xia C, Peng Y, Zhang H, Wang T, Wei S and Jia Y 2014 Phys. Chem. Chem. Phys. 16 19674
[2] Huang Y, Sutter E, Sadowski J T, Cotlet M, Monti O L A, Racke D A, Neupane M R, Wickramaratne D, Lake R K, Parkinson B A and Sutter P 2014 ACS Nano 8 10743
[3] Sun Y F, Cheng H, Gao S, Sun Z H, Liu Q H, Liu Q, Lei F C, Yao T, He J F, Wei S Q and Xie Y 2012 Angew. Chem., Int. Ed. 51 8727
[4] Chen X, Hou Y, Zhang B, Yang X H and Yang H G 2013 Chem. Commun. 49 5793
[5] Xu L, Zhang P, Jiang H, Wang X, Chen F, Hu Z, Gong Y, Shang L, Zhang J, Jiang K and Chu J 2019 Small 15 1904116
[6] Seo J, Jang J, Park S, Kim C, Park B and Cheon J 2008 Adv. Mater. 20 4269
[7] Wang D, Tang M, Jiang H, Li M, Jiang S, Sun L and Sun J 2020 Chem. Eng. J. 400 125814
[8] Du W, Deng D, Han Z, Xiao W, Bian C and Qian X 2011 Cryst. Eng. Comm. 13 2071
[9] Li Y, Tang L B, Li R J, Xiang J Z, Teng K S and Lau S P 2019 Chin. Phys. B 28 037801
[10] Sun L, Zhou W, Liu Y, Lu Y, Liang Y and Wu P 2017 Comput. Mater. Sci. 126 52
[11] An X, Yu J C and Tang J 2014 J. Mater. Chem. A 2 1000
[12] Liu X, He D, He J, Wang Y and Fu M 2019 Chin. Phys. B 28 118101
[13] Chen G X, Fan X B, Li S Q and Zhang J M 2019 Acta Phys. Sin. 68 237303 (in Chinese)
[14] Lin L, Guo Y P, He C Z, Tao H L, Huang J T, Yu W Y, Chen R X, Lou M S and Yan L B 2020 Chin. Phys. B 29 097102
[15] Dietl T 2010 Nat. Mater. 9 965
[16] Li B, Xing T, Zhong M Z, Huang L, Lei N, Zhang J, Li J B and Wei Z M 2017 Nat. Commun. 8 1958
[17] Dietl T, Bonanni A and Ohno H 2019 J. Semicond. 40 080301
[18] Luo M, Xu Y E and Song Y X 2018 Comput. Mater. Sci. 154 309
[19] Yu D, Liu Y, Sun L, Wu P and Zhou W 2016 Phys. Chem. Chem. Phys. 18 318
[20] Xia C, Zhao X, Peng Y, Zhang H, Wei S and Jia Y 2015 Superlattices Microstruct. 85 664
[21] Ali A, Zhang J M, Muhammad I, Wei X M, Huang Y H, Rehman M U and Ahmad I 2020 Thin Solid Films 705 138045
[22] Xiao W Z, Xiao G, Rong Q Y, Chen Q and Wang L L 2017 J. Magn. Magn. Mater. 438 152
[23] Ullah H, Noor-A-Alam M and Shin Y H 2020 J. Am. Ceram. Soc. 103 391
[24] Xiao W Z, Xiao G, Rong Q Y and Wang L L 2018 Physica E 99 182
[25] Liu X Y, Wei D H and Zhao J H 2019 J. Semicond. 40 080101
[26] Blochl P E 1994 Phys. Rev. B 50 17953
[27] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[29] Prabha D, Ilangovan S, Balamurugan S, Suganya M, Anitha S, Nagarethinam V S and Balu A R 2017 Optik 142 301
[30] Prabha D, Ilangovan S, Srivind J, Suganya M, Anitha S, Balamurugan S and Balu A R 2017 J. Mater. Sci.: Mater. Electron. 28 15556
[31] Shown I, Samireddi S, Chang Y C, Putikam R, Chang P H, Sabbah A, Fu F Y, Chen W F, Wu C I, Yu T Y, Chung P W, Lin M C, Chen L C and Chen K H 2018 Nat. Commun. 9 169
[32] Chu H, Zhang F, Pei L, Cui Z, Shen J and Ye M 2018 J. Alloys Compd. 767 583
[33] Heiba Z K, Mohamed M B and Abdel Kader M H 2018 J. Electron. Mater. 47 2945
[34] Yassin O A, Abdelaziz A A and Jaber A Y 2015 Mater. Sci. Semicond. Process. 38 81
[35] Liu J, Liu X, Chen Z, Miao L, Liu X, Li B, Tang L, Chen K, Liu Y, Li J, Wei Z and Duan X 2018 Nano Res. 12 463
[36] Xue Y, Zhou W, Ding L, Jiang J, Ning H, Liang X, Zhou W, Guo J and Huang D 2020 Phys. Lett. A 384 126695
[37] Cheng Y C, Zhu Z Y, Mi W B, Guo Z B and Schwingenschlogl U 2013 Phys. Rev. B 87 100401
[38] Li B, Huang L, Zhong M Z, Huo N J, Li Y T, Yang S X, Fan C, Yang J H, Hu W P, Wei Z M and Li J B 2015 Acs Nano 9 1257
[39] Li Q, Zhao X X, Deng L J, Shi Z T, Liu S, Wei Q L, Zhang L B, Cheng Y C, Zhang L, Lu H P, Gao W B, Huang W, Qiu C W, Xiang G, Pennycook S J, Xiong Q H, Loh K P and Peng B 2020 Acs Nano 14 4636
[40] Duan H L, Guo P, Wang C, Tan H, Hu W, Yan W S, Ma C, Cai L, Song L, Zhang W H, Sun Z H, Wang L J, Zhao W B, Yin Y W, Li X G and Wei S Q 2019 Nat. Commun. 10 1584
[41] Kudrnovský J, Turek I, Drchal V, Máca F, Weinberger P and Bruno P 2004 Phys. Rev. B 69 115208
[42] Máca F, Kudrnovský J, Drchal V and Bouzerar G 2008 Appl. Phys. Lett. 92 212503
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[3] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[4] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[5] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[6] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[7] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[8] A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer
Hsiang-Chun Wang(王祥骏), Yuheng Lin(林钰恒), Xiao Liu(刘潇), Xuanhua Deng(邓煊华),Jianwei Ben(贲建伟), Wenjie Yu(俞文杰), Deliang Zhu(朱德亮), and Xinke Liu(刘新科). Chin. Phys. B, 2023, 32(1): 018504.
[9] Probing subcycle spectral structures and dynamics of high-order harmonic generation in crystals
Long Lin(林龙), Tong-Gang Jia(贾铜钢), Zhi-Bin Wang(王志斌), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2022, 31(9): 093202.
[10] Degradation mechanisms for a-InGaZnO thin-film transistors functioning under simultaneous DC gate and drain biases
Tianyuan Song(宋天源), Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Qi Shan(单奇). Chin. Phys. B, 2022, 31(8): 088101.
[11] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[12] Magnetic properties of oxides and silicon single crystals
Zhong-Xue Huang(黄忠学), Rui Wang(王瑞), Xin Yang(杨鑫), Hao-Feng Chen(陈浩锋), and Li-Xin Cao(曹立新). Chin. Phys. B, 2022, 31(8): 087501.
[13] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[14] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[15] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
No Suggested Reading articles found!