Special Issue:
SPECIAL TOPIC — Two-dimensional magnetic materials and devices
|
SPECIAL TOPIC—Two-dimensional magnetic materials and devices |
Prev
Next
|
|
|
Carrier and magnetism engineering for monolayer SnS2 by high throughput first-principles calculations |
Qing Zhan(詹庆)1,†, Xiaoguang Luo(罗小光)2,†, Hao Zhang(张皓)1, Zhenxiao Zhang(张振霄)1, Dongdong Liu(刘冬冬)1, and Yingchun Cheng(程迎春)1,‡ |
1 Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China; 2 Frontiers Science Center for Flexible Electronics(FSCFE), Shaanxi Institute of Flexible Electronics(SIFE) & Shaanxi Institute of Biomedical Materials and Engineering(SIBME), Northwestern Polytechnical University(NPU), Xi'an 710129, China |
|
|
Abstract Two-dimensional (2D) semiconducting tin disulfide (SnS2) has been widely used for optoelectronic applications. To functionalize SnS2 for extending its application, we investigate the stability, electronic and magnetic properties of substitutional doping by high throughput first-principles calculations. There are a lot of elements that can be doped in monolayer SnS2. Nonmetal in group A can introduce p-type and n-type carriers, while most metals in group A can only lead to p-type doping. Not only 3d, but also 4d and 5d transition metals in groups VB to VⅢB9 can introduce magnetism in SnS2, which is potentially applicable for spintronics. This study provides a comprehensive view of functionalization of SnS2 by substitutional doping, which will guide further experimental realization.
|
Received: 30 April 2021
Revised: 15 September 2021
Accepted manuscript online: 18 September 2021
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
74.62.Dh
|
(Effects of crystal defects, doping and substitution)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 91833302). |
Corresponding Authors:
Yingchun Cheng
E-mail: iamyccheng@njtech.edu.cn
|
Cite this article:
Qing Zhan(詹庆), Xiaoguang Luo(罗小光), Hao Zhang(张皓), Zhenxiao Zhang(张振霄), Dongdong Liu(刘冬冬), and Yingchun Cheng(程迎春) Carrier and magnetism engineering for monolayer SnS2 by high throughput first-principles calculations 2021 Chin. Phys. B 30 117105
|
[1] Xia C, Peng Y, Zhang H, Wang T, Wei S and Jia Y 2014 Phys. Chem. Chem. Phys. 16 19674 [2] Huang Y, Sutter E, Sadowski J T, Cotlet M, Monti O L A, Racke D A, Neupane M R, Wickramaratne D, Lake R K, Parkinson B A and Sutter P 2014 ACS Nano 8 10743 [3] Sun Y F, Cheng H, Gao S, Sun Z H, Liu Q H, Liu Q, Lei F C, Yao T, He J F, Wei S Q and Xie Y 2012 Angew. Chem., Int. Ed. 51 8727 [4] Chen X, Hou Y, Zhang B, Yang X H and Yang H G 2013 Chem. Commun. 49 5793 [5] Xu L, Zhang P, Jiang H, Wang X, Chen F, Hu Z, Gong Y, Shang L, Zhang J, Jiang K and Chu J 2019 Small 15 1904116 [6] Seo J, Jang J, Park S, Kim C, Park B and Cheon J 2008 Adv. Mater. 20 4269 [7] Wang D, Tang M, Jiang H, Li M, Jiang S, Sun L and Sun J 2020 Chem. Eng. J. 400 125814 [8] Du W, Deng D, Han Z, Xiao W, Bian C and Qian X 2011 Cryst. Eng. Comm. 13 2071 [9] Li Y, Tang L B, Li R J, Xiang J Z, Teng K S and Lau S P 2019 Chin. Phys. B 28 037801 [10] Sun L, Zhou W, Liu Y, Lu Y, Liang Y and Wu P 2017 Comput. Mater. Sci. 126 52 [11] An X, Yu J C and Tang J 2014 J. Mater. Chem. A 2 1000 [12] Liu X, He D, He J, Wang Y and Fu M 2019 Chin. Phys. B 28 118101 [13] Chen G X, Fan X B, Li S Q and Zhang J M 2019 Acta Phys. Sin. 68 237303 (in Chinese) [14] Lin L, Guo Y P, He C Z, Tao H L, Huang J T, Yu W Y, Chen R X, Lou M S and Yan L B 2020 Chin. Phys. B 29 097102 [15] Dietl T 2010 Nat. Mater. 9 965 [16] Li B, Xing T, Zhong M Z, Huang L, Lei N, Zhang J, Li J B and Wei Z M 2017 Nat. Commun. 8 1958 [17] Dietl T, Bonanni A and Ohno H 2019 J. Semicond. 40 080301 [18] Luo M, Xu Y E and Song Y X 2018 Comput. Mater. Sci. 154 309 [19] Yu D, Liu Y, Sun L, Wu P and Zhou W 2016 Phys. Chem. Chem. Phys. 18 318 [20] Xia C, Zhao X, Peng Y, Zhang H, Wei S and Jia Y 2015 Superlattices Microstruct. 85 664 [21] Ali A, Zhang J M, Muhammad I, Wei X M, Huang Y H, Rehman M U and Ahmad I 2020 Thin Solid Films 705 138045 [22] Xiao W Z, Xiao G, Rong Q Y, Chen Q and Wang L L 2017 J. Magn. Magn. Mater. 438 152 [23] Ullah H, Noor-A-Alam M and Shin Y H 2020 J. Am. Ceram. Soc. 103 391 [24] Xiao W Z, Xiao G, Rong Q Y and Wang L L 2018 Physica E 99 182 [25] Liu X Y, Wei D H and Zhao J H 2019 J. Semicond. 40 080101 [26] Blochl P E 1994 Phys. Rev. B 50 17953 [27] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [28] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [29] Prabha D, Ilangovan S, Balamurugan S, Suganya M, Anitha S, Nagarethinam V S and Balu A R 2017 Optik 142 301 [30] Prabha D, Ilangovan S, Srivind J, Suganya M, Anitha S, Balamurugan S and Balu A R 2017 J. Mater. Sci.: Mater. Electron. 28 15556 [31] Shown I, Samireddi S, Chang Y C, Putikam R, Chang P H, Sabbah A, Fu F Y, Chen W F, Wu C I, Yu T Y, Chung P W, Lin M C, Chen L C and Chen K H 2018 Nat. Commun. 9 169 [32] Chu H, Zhang F, Pei L, Cui Z, Shen J and Ye M 2018 J. Alloys Compd. 767 583 [33] Heiba Z K, Mohamed M B and Abdel Kader M H 2018 J. Electron. Mater. 47 2945 [34] Yassin O A, Abdelaziz A A and Jaber A Y 2015 Mater. Sci. Semicond. Process. 38 81 [35] Liu J, Liu X, Chen Z, Miao L, Liu X, Li B, Tang L, Chen K, Liu Y, Li J, Wei Z and Duan X 2018 Nano Res. 12 463 [36] Xue Y, Zhou W, Ding L, Jiang J, Ning H, Liang X, Zhou W, Guo J and Huang D 2020 Phys. Lett. A 384 126695 [37] Cheng Y C, Zhu Z Y, Mi W B, Guo Z B and Schwingenschlogl U 2013 Phys. Rev. B 87 100401 [38] Li B, Huang L, Zhong M Z, Huo N J, Li Y T, Yang S X, Fan C, Yang J H, Hu W P, Wei Z M and Li J B 2015 Acs Nano 9 1257 [39] Li Q, Zhao X X, Deng L J, Shi Z T, Liu S, Wei Q L, Zhang L B, Cheng Y C, Zhang L, Lu H P, Gao W B, Huang W, Qiu C W, Xiang G, Pennycook S J, Xiong Q H, Loh K P and Peng B 2020 Acs Nano 14 4636 [40] Duan H L, Guo P, Wang C, Tan H, Hu W, Yan W S, Ma C, Cai L, Song L, Zhang W H, Sun Z H, Wang L J, Zhao W B, Yin Y W, Li X G and Wei S Q 2019 Nat. Commun. 10 1584 [41] Kudrnovský J, Turek I, Drchal V, Máca F, Weinberger P and Bruno P 2004 Phys. Rev. B 69 115208 [42] Máca F, Kudrnovský J, Drchal V and Bouzerar G 2008 Appl. Phys. Lett. 92 212503 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|