|
|
Probing subcycle spectral structures and dynamics of high-order harmonic generation in crystals |
Long Lin(林龙)1,2, Tong-Gang Jia(贾铜钢)1,2, Zhi-Bin Wang(王志斌)3, and Peng-Cheng Li(李鹏程)1,2,† |
1 Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou 515063, China; 2 Key Laboratory of Intelligent Manufacturing Technology of MOE, Shantou University, Shantou 515063, China; 3 College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China |
|
|
Abstract Subcycle spectral structures and dynamics of high-order harmonic generation (HHG) processes of atoms and molecules driven by intense laser fields on the attosecond time scale have been originally studied theoretically and experimentally. However, the time scale of HHG dynamics in crystals is in the order of sub-femtosecond, and the carrier dynamics of HHG in crystals driven by subcycle laser pulses are largely unexplored. Here we perform a theoretical study of subcycle structures, spectra, and dynamics of HHG of crystals in mid-infrared laser fields subject to excitation by a subcycle laser pulse with a time delay. The HHG spectra as a function of time delay between two laser fields are calculated by using a single-band model for the intra-band carrier dynamics in crystal momentum space and by solving the time-dependent Schrödinger equation in velocity gauge for the treatment of multi-band crystal systems. The results exhibit a complex time-delay-dependent oscillatory pattern, and the enhancement and suppression of the HHG related to subcycle pulse are observed at the given time delay in either single-band or multi-band crystal systems. To understand oscillation structures with respect to the dependence for the subcycle laser fields, the time-frequency characteristics of the HHG as well as the probability density distribution of the radiation are analyzed in detail.
|
Received: 11 February 2022
Revised: 19 April 2022
Accepted manuscript online: 22 April 2022
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074239 and 91850209), the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2020A1515010927 and 2020ST084), Department of Education of Guangdong Province, China (Grant Nos. 2019KTSCX038 and 2020KCXTD012), Shantou University (Grant No. NTF18030), the Natural Science basic Research Program of Shaanxi Province, China (Grant No. 2022JM-015), and Scientific Research Foundation of SUST (Grant No. 2017BJ-30). |
Corresponding Authors:
Peng-Cheng Li
E-mail: pchli@stu.edu.cn
|
Cite this article:
Long Lin(林龙), Tong-Gang Jia(贾铜钢), Zhi-Bin Wang(王志斌), and Peng-Cheng Li(李鹏程) Probing subcycle spectral structures and dynamics of high-order harmonic generation in crystals 2022 Chin. Phys. B 31 093202
|
[1] Corkum P B 1993 Phys. Rev. Lett. 71 1994 [2] Paul A, Bartels R A, Tobey R, Green H, Weiman S, Christov I, Murnane M, Kapteyn H and Backus S 2003 Nature 421 51 [3] Corkum P B and Krausz F 2007 Nat. Phys. 3 381 [4] He L, Lan P, Le A T, Wang B, Zhu X, Lu P and Lin C D 2018 Phys. Rev. Lett. 121 163201 [5] Li Y, Sato T and Ishikawa K L 2019 Phys. Rev. A 99 043401 [6] Xiao F, Fan X, Wang L, Zhang D W, Wu J H, Wang X W and Zhao Z X 2020 Chin. Phys. Lett. 37 114202 [7] Zhang J, Hua L Q, Chen Z, Zhu M F, Gong C and Liu X J 2020 Chin. Phys. Lett. 37 124203 [8] Wang X Z, Wang Z H, Wang Y Y, Zhang X, Song J J and Wei Z Y 2021 Chin. Phys. Lett. 38 074202 [9] Li W K, Lei Y, Li X, Yang T, Du M, Jiang Y, Li J L, Luo S Z, Liu A H, He L H, Ma P, Zhang D D and Ding D J 2021 Chin. Phys. Lett. 38 053202 [10] Li F, Yang Y J, Chen J, Liu X J, Wei Z Y and Wang B B 2020 Chin. Phys. Lett. 37 113201 [11] Itatani J, Levesque J, Zeidler D, Niikura H, Pépin H, Kieffer J C, Corkum P B and Villeneuve D M 2004 Nature 432 867 [12] Zhai C, Zhu X, Lan P, Wang F, He L, Shi W, Li Y, Li M, Zhang Q and Lu P 2019 Phys. Rev. A 95 033420 [13] Ghimire S, Ndabashimiye G, DiChiara A D, Sistrunk E, Stockman M I, Agostini P, DiMauro L F and Reis D A 2014 J. Phys. B:At. Mol. Opt. Phys. 47 204030 [14] Vampa G and Brabec T 2017 J. Phys. B:At. Mol. Opt. Phys. 50 083001 [15] Kruchinin S Y, Krausz F and Yakovlev V S 2018 Rev. Mod. Phys. 90 021002 [16] Higuchi T, Stockman M I and Hommelhoff P 2014 Phys. Rev. Lett. 113 213901 [17] Mrudul M S, Pattanayak A, Ivanov M and Dixit G 2019 Phys. Rev. A 100 043420 [18] Ghimire S, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F and Reis D A 2011 Nat. Phys. 7 138 [19] Luu T T, Garg M, Kruchinin S Y, Moulet A, Hassan M T and Goulielmakis E 2015 Nature 521 498 [20] Garg M, Zhan M, Luu T T, Lakhotia H, Klostermann T, Guggenmos A and Goulielmakis E 2016 Nature 538 359 [21] Garg M, Kim H Y and Goulielmakis 2018 Nat. Photon. 12 291 [22] Ghimire S and Reis D A 2019 Nat. Phys. 15 10 [23] Guan Z, Wang G L, Zhang L, Jiao Z H and Zhao S F 2020 Chin. Phys. Lett. 38 054201 [24] Schubert O, Hohenleutner M, Langer F, Urbanek B, Lange C, Huttner U, Golde D, Meier T, Kira M, Koch S W and Huber R 2014 Nat. Photon. 8 119 [25] Vampa G, McDonald C R, Orlando G, Corkum P B and Brabec T 2015 Phys. Rev. B 91 064302 [26] Kemper A F, Moritz B, Freericks J K and Devereaux T P 2013 New J. Phys. 15 023003 [27] Fu S L, Feng Y K, Li J B, Yue S J, Zhang X, Hu B T and Du H C 2020 Phys. Rev. A 101 023402 [28] Wu M, Ghimire S, Reis D A, Schafer K J and Gaarde M B 2015 Phys. Rev. A 91 043839 [29] Li J B, Zhang X, Yue S J, Wu H M, Hu B T and Du H C 2017 Opt. Express 25 18603 [30] Chen J G, Yang Y J, Chen J and Wang B B 2015 Phys. Rev. A 91 043403 [31] Wang S, Zhu Z Y, Zhang Y Z, Yan T M and Jiang Y H 2020 Chin. Phys. Lett. 38 013401 [32] Chini M, Wang X, Cheng Y, Wu Y, Zhao D, Telnov D A, Chu S I and Chang Z H 2013 Sci. Rep. 3 1105 [33] Chen S, Bell M J, Beck A R, Mashiko H, Wu M, Pfeiffer A N, Gaarde M B, Neumark D M, Leone S R and Schafer K J 2012 Phys. Rev. A 86 063408 [34] Heslar J, Telnov D A and Chu S I 2014 Phys. Rev. A 89 052517 [35] Heslar J, Telnov D A and Chu S I 2015 Phys. Rev. A 91 023420 [36] Zhao Y T, Jiang S C, Zhao X, Chen J G and Yang Y J 2020 Opt. Lett. 45 2874 [37] Mücke O D 2011 Phys. Rev. B 84 081202(R) [38] Golde D, Meier T and Koch S W 2008 Phys. Rev. B 77 075330 [39] Korbman M, Kruchinin S Y and Yakovlev V S 2013 New J. Phys. 15 013006 [40] Chini M, Zhao B, Wang H, Cheng Y, Hu S X and Chang Z H 2012 Phys. Rev. Lett. 109 073601 [41] Gilbertson S, Chini M, Feng X, Khan S, Wu Y and Chang Z H 2010 Phys. Rev. Lett. 105 263003 [42] Wang H, Chini M, Chen S, Zhang C H, He F, Cheng Y, Wu Y, Thumm U and Chang Z H 2010 Phys. Rev. Lett. 105 143002 [43] Tamaya T and Kato T 2019 Phys. Rev. B 100 081203(R) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|