Tuning charge and orbital ordering in DyNiO3 by biaxial strain
Litong Jiang(姜丽桐)1,2, Kuijuan Jin(金奎娟)1,2,3,†, Wenning Ren(任文宁)1,2, and Guozhen Yang(杨国桢)1,2,3
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract The first-principles calculations were used to explore the tunable electronic structure in DyNiO3 (DNO) under the effects of the biaxial compressive and tensile strains. We explored how the biaxial strain tunes the orbital hybridization and influences the charge and orbital ordering states. We found that breathing mode and Jahn-Teller distortion play a primary role in charge ordering state and orbital ordering state, respectively. Additionally, the calculated results revealed that the biaxial strain has the ability to manipulate the phase competition between the two states. A phase transition point has been found under tensile train. If the biaxial train is larger than the point, the system favors orbital ordering state. If the strain is smaller than the point, the system is in charge ordering state favorably.
(Electronic structure and bonding characteristics)
Fund: Project supported by the National Key Basic Research Program of China (Grant No. 2019YFA0308500), the National Natural Science Foundation of China (Grant No. 11721404), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB33030200).
Corresponding Authors:
Kuijuan Jin
E-mail: kjjin@iphy.ac.cn
Cite this article:
Litong Jiang(姜丽桐), Kuijuan Jin(金奎娟), Wenning Ren(任文宁), and Guozhen Yang(杨国桢) Tuning charge and orbital ordering in DyNiO3 by biaxial strain 2021 Chin. Phys. B 30 117106
[1] Staub U, Meijer G I, Fauth F, Allenspach R, Bednorz J G, Karpinski J, Kazakov S M, Paolasini L and d'Acapito F 2002 Phys. Rev. Lett.88 126402 [2] Fernandez-Diaz M T, Alonso J A, Martinez-Lope M J, Casais M T, Garcia-Munoz J L and Aranda M A G 2000 Physica B276 218 [3] Alonso J A, García-Muñoz J L, Fernández-Díaz M T, Aranda M A G, Martínez-Lope M J and Casais M T 1999 Phys. Rev. Lett.82 3871 [4] Mizokawa T, Khomskii D and Sawatzky G 2000 Phys. Rev. B61 11263 [5] Hwang H Y 2006 MRS Bulletin31 28 [6] Medarde M L 1997 J. Phys.: Condens. Matter9 1679 [7] Alonso J A, Martinez-Lope M J, Demazeau G, Fernandez-Diaz M T, Presniakov I A, Rusakov V S, Gubaidulina T V and Sobolev A V 2008 Dalton Trans.46 6584 [8] Catalano S, Gibert M, Bisogni V, Peil O E, He F, Sutarto R, Viret M, Zubko P, Scherwitzl R, Georges A, Sawatzky G A, Schmitt T and Triscone J M 2014 APL Materials2 116110 [9] Barman S R, Chainani A and Sarma D D 1994 Phys. Rev. B49 8475 [10] Middey S, Chakhalian J, Mahadevan P, Freeland J W, Millis A J and Sarma D D 2016 Ann. Rev. Mater. Res.46 305 [11] Bisogni V, Catalano S, Green R J, Gibert M, Scherwitzl R, Huang Y, Strocov V N, Zubko P, Balandeh S, Triscone J M, Sawatzky G and Schmitt T 2016 Nat. Commun.7 13017 [12] Mazin I I, Khomskii D I, Lengsdorf R, Alonso J A, Marshall W G, Ibberson R M, Podlesnyak A, Martínez-Lope M J and Abd-Elmeguid M M 2007 Phys. Rev. Lett.98 176406 [13] Johnston S, Mukherjee A, Elfimov I, Berciu M and Sawatzky G A 2014 Phys. Rev. Lett.112 106404 [14] Park H, Millis A J and Marianetti C A 2012 Phys. Rev. Lett.109 156402 [15] Garcia-Munoz J L, Rodriguez-Carvajal J and Lacorre P 1994 Phys. Rev. B50 978 [16] Rodríguez-Carvajal J, Rosenkranz S, Medarde M, Lacorre P, Fernandez-Díaz M, Fauth F and Trounov V 1998 Phys. Rev. B57 456 [17] Chen H, Kumah D P, Disa A S, Walker F J, Ahn C H and Ismail-Beigi S 2013 Phys. Rev. Lett.110 186402 [18] Torriss B, Margot J and Chaker M 2017 Sci. Rep.7 40915 [19] Bruno F Y, Rushchanskii K Z, Valencia S, Dumont Y, Carrétéro C, Jacquet E, Abrudan R, Blügel S, Ležaić M, Bibes M and Barthélémy A 2013 Phys. Rev. B88 195108 [20] Jin K J, Lu H B, Zhou Q L, Zhao K, Cheng B L, Chen Z H, Zhou Y L and Yang G Z 2005 Phys. Rev. B71 184428 [21] Jiang L T, Jin K J, Ma C, Ge C, Yang G Z and He X 2018 Phys. Rev. B97 195132 [22] Xu Z T, Jin K J, Gu L, Jin Y L, Ge C, Wang C, Guo H Z, Lu H B, Zhao R Q and Yang G Z 2012 Small8 1279 [23] Mikheev E, Hauser A J, Himmetoglu B, Moreno N E, Janotti A, Van de Walle C G and Stemmer S 2015 Sci. Adv.1 e1500797 [24] He Z and Millis A J 2015 Phys. Rev. B91 195138 [25] Zhang J Y, Kim H, Mikheev E, Hauser A J and Stemmer S 2016 Sci. Rep.6 23652 [26] Varignon J, Grisolia M N, Íñiguez J, Barthélémy A and Bibes M 2017 npj Quantum Materials2 1 [27] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett.100 136406 [28] Kresse G and Furthmüller J 1996 Phys. Rev. B54 11169 [29] Kresse G and Joubert D 1999 Phys. Rev. B59 1758 [30] Dudarev S, Botton G, Savrasov S, Humphreys C and Sutton A 1998 Phys. Rev. B57 1505 [31] Mercy A, Bieder J, Iniguez J and Ghosez P 2017 Nat. Commun.8 1677 [32] Hampel A and Ederer C 2017 Phys. Rev. B96 165130 [33] Yoo P and Liao P 2020 Phys. Chem. Chem. Phys.22 6888 [34] Momma K and Izumi F 2011 J. Appl. Crystallography44 1272 [35] Kanamori J 1960 J. Appl. Phys.31 S14 [36] Van V J H 1939 J. Chem. Phys.7 72
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.