Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 037202    DOI: 10.1088/1674-1056/aca7e6
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Quantitative measurement of the charge carrier concentration using dielectric force microscopy

Junqi Lai(赖君奇)1,2, Bowen Chen(陈博文)1,2, Zhiwei Xing(邢志伟)3, Xuefei Li(李雪飞)3, Shulong Lu(陆书龙)2,3, Qi Chen(陈琪)1,2,†, and Liwei Chen(陈立桅)1,4,‡
1 i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China;
2 School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China;
3 Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China;
4 In-situ Center for Physical Sciences, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  The charge carrier concentration profile is a critical factor that determines semiconducting material properties and device performance. Dielectric force microscopy (DFM) has been previously developed to map charge carrier concentrations with nanometer-scale spatial resolution. However, it is challenging to quantitatively obtain the charge carrier concentration, since the dielectric force is also affected by the mobility. Here, we quantitative measured the charge carrier concentration at the saturation mobility regime via the rectification effect-dependent gating ratio of DFM. By measuring a series of n-type GaAs and GaN thin films with mobility in the saturation regime, we confirmed the decreased DFM-measured gating ratio with increasing electron concentration. Combined with numerical simulation to calibrate the tip-sample geometry-induced systematic error, the quantitative correlation between the DFM-measured gating ratio and the electron concentration has been established, where the extracted electron concentration presents high accuracy in the range of 4×1016 - 1×1018 cm-3. We expect the quantitative DFM to find broad applications in characterizing the charge carrier transport properties of various semiconducting materials and devices.
Keywords:  dielectric force microscopy      charge carrier concentration      quantitative measurement      numerical simulation  
Received:  25 July 2022      Revised:  27 November 2022      Accepted manuscript online:  02 December 2022
PACS:  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
  72.80.Ey (III-V and II-VI semiconductors)  
  68.37.Ps (Atomic force microscopy (AFM))  
  02.60.-x (Numerical approximation and analysis)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2021YFA1202802), the National Natural Science Foundation of China (Grant Nos. 21875280, 21991150, 21991153, and 22022205), the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-054), and the Special Foundation for Carbon Peak Neutralization Technology Innovation Program of Jiangsu Province, China (Grant No. BE2022026).
Corresponding Authors:  Qi Chen, Liwei Chen     E-mail:  qchen2011@sinano.ac.cn;lwchen2018@sjtu.edu.cn

Cite this article: 

Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅) Quantitative measurement of the charge carrier concentration using dielectric force microscopy 2023 Chin. Phys. B 32 037202

[1] Koster L J A, Smits E C P, Mihailetchi V D and Blom P W M 2005 Phys. Rev. B 72 085205
[2] Sze S M and Ng K K 2006 Physics of semiconductor devices (New Jersey: John wiley & sons) pp. 16-75
[3] Li P, Ai X, Zhang Q H, Gu S J, Wang L J and Jiang W 2021 Chin. Chem. Lett. 32 811
[4] Pingree L S C, Reid O G and Ginger D S 2009 Adv. Mater. 21 19
[5] Chen X, Lai J Q, Shen Y B, Chen Q and Chen L W 2018 Adv. Mater. 30 1802490
[6] Lai K, Kundhikanjana W, Kelly M and Shen Z X 2008 Rev. Sci. Instrum. 79 063703
[7] Hussain S, Xu K Q, Ye S L, Lei L, Liu X M, Xu R, Xie L M and Cheng Z H 2019 Front. Phys. 14 33401
[8] Barrett R C and Quate C F 1991 J. Appl. Phys. 70 2725
[9] Linde F, Yadavalli N S and Santer S 2013 Appl. Phys. Lett. 103 253101
[10] Cherniavskaya O, Chen L W, Weng V, Yuditsky L and Brus L E 2003 J. Phys. Chem. B 107 1525
[11] Zhang J, Ye F Y, Chen Q, Lu W, Cai J H and Chen L W 2013 Sci. Sin.: Chim. 43 1806
[12] Zhang J, Lu W, Li Y S, Cai J H and Chen L W 2015 Acc. Chem. Res. 48 1788
[13] Jiang Y P, Qi Q, Wang R, Zhang J, Xue Q K, Wang C, Jiang C and Qiu X H 2011 ACS Nano 5 6195
[14] Chen Q, Chen L, Ye F Y, Zhao T, Tang F, Rajagopal A, Jiang Z, Jiang S, Jen A K Y, Y. X, Cai J H and Chen L W 2017 Nano Lett. 17 3231
[15] Li Z J, Wu J J, Hu Z P, Lin Y, Chen Q, Guo Y Q, Liu Y H, Zhao Y C, Peng J, Chu W S, Wu C Z and Xie Y 2017 Nat. Commun. 8 15561
[16] Xu R, Ye S L, Xu K Q, Lei L, Hussain S, Zheng Z Y, Pang F, Xing S Y, Liu X M, Ji W and Cheng Z H 2018 Nanotechnology 29 355701
[17] Lu W, Xiong Y, Hassanien A, Zhao W, Zheng M and Chen L W 2009 Nano Lett. 9 1668
[18] Lu W, Xiong Y and Chen L W 2009 J. Phys. Chem. C 113 10337
[19] Lu W, Zhang J, Li Y S, Chen Q, Wang X P, Hassanien A and Chen L W 2012 J. Phys. Chem. C 116 7158
[20] Zhang K, Marzari N and Zhang Q 2013 J. Phys. Chem. C 117 24570
[21] Zhang K, Wang X, Sun L, Zou J, Wang J, Liu Z, Chen T, Tay B K and Zhang Q 2017 Appl. Phys. Lett. 111 043106
[22] Lei L, Xu R, Ye S L, Wang X S, Xu K Q, Hussain S, Li Y J, Sugawara Y, Xie L M, Ji W and Cheng Z H 2018 J. Phys. Commun. 2 025013
[23] Kang Y B, Jeon D and Kim T 2020 J. Phys. Chem. C 124 18316
[24] Jeon D, Kang Y and Kim T 2021 ACS Appl. Electron. Mater. 4 124
[25] Zhang J, Lu W, Li Y S, Lu D, Zhang T, Wang X P and Chen L W 2012 J. Phys. Chem. Lett. 3 3509
[26] Chen Q, Lu W, Wu Y K, Ding H Y, Wang B and Chen L W 2014 Chin. J. Chem. Phys. 27 582
[27] Li Y S, Ge J, Cai J H, Zhang J, Lu W, Liu J and Chen L W 2014 Nano Res. 7 1623
[28] Dai P, Ji L, Tan M, Uchida S, Wu Y Y, Abuduwayiti A, Heini M, Guo Q, Bian L F, Lu S L and Yang H 2017 Sol. Energy Mater. Sol. Cells 171 118
[29] Lu W, Wang D and Chen L W 2007 Nano Lett. 7 2729
[30] Park J, Jeon D, Kang Y B, Yu Y J and Kim T 2019 J. Phys. Chem. Lett. 10 4010
[31] Qi G C, Yan H, Guan L, Yang Y L, Qiu X H, Wang C, Li Y B and Jiang Y P 2008 J. Appl. Phys. 103 114311
[32] Qi G C, Yang Y L, Yan H, Guan L, Li Y B, Qiu X H and Wang C 2009 J. Phys. Chem. C 113 204
[1] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[2] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[3] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[4] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[5] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[6] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[7] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[8] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[9] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[10] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[11] Numerical simulation of chorus-driving acceleration of relativistic electrons at extremely low L-shell during geomagnetic storms
Zhen-Xia Zhang(张振霞), Ruo-Xian Zhou(周若贤), Man Hua(花漫), Xin-Qiao Li(李新乔), Bin-Bin Ni(倪彬彬), and Ju-Tao Yang(杨巨涛). Chin. Phys. B, 2021, 30(10): 109401.
[12] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[13] Synchronization mechanism of clapping rhythms in mutual interacting individuals
Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔). Chin. Phys. B, 2021, 30(1): 010505.
[14] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[15] Numerical simulation on ionic wind in circular channels
Gui-Wen Zhang(张桂文), Jue-Kuan Yang(杨决宽), and Xiao-Hui Lin(林晓辉). Chin. Phys. B, 2021, 30(1): 014701.
No Suggested Reading articles found!