Abstract SnO2/Co3O4 nanofibers (NFs) are synthesized by using a homopolar electrospinning system with double jets of positive polarity electric fields. The morphology and structure of SnO2/Co3O4 hetero-nanofibers are characterized by using field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), x-ray diffraction (XRD), and x-ray photoelectron spectrometer (XPS). The analyses of SnO2/Co3O4 NFs by EDS and HRTEM show that the cobalt and tin exist on one nanofiber, which is related to the homopolar electrospinning and the crystallization during sintering. As a typical n-type semiconductor, SnO2 has the disadvantages of high optimal operating temperature and poor reproducibility. Comparing with SnO2, the optimal operating temperature of SnO2/Co3O4 NFs is reduced from 350℃ to 250℃, which may be related to the catalysis of Co3O4. The response of SnO2/Co3O4 to 100-ppm ethanol at 250℃ is 50.9, 9 times higher than that of pure SnO2, which may be attributed to the p-n heterojunction between the n-type SnO2 crystalline grain and the p-type Co3O4 crystalline grain. The nanoscale p-n heterojunction promotes the electron migration and forms an interface barrier. The synergy effects between SnO2 and Co3O4, the crystalline grain p-n heterojunction, the existence of nanofibers and the large specific surface area all jointly contribute to the improved gas sensing performance.
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟) SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor 2022 Chin. Phys. B 31 028101
[1] Kou X, Wang C, Ding M, Feng C, Li X, Ma J, Zhang H, Sun Y and Lu G 2016 Sens. Actuators B236 425 [2] Burgués J and Marco S 2018 Sensors18 339 [3] Liu X, Chen N, Han B, Xiao X, Chen G, Djerdj I and Wang Y 2015 Nanoscale7 14872 [4] Suematsu K, Shin Y, Hua Z, Yoshida K and Shimanoe K 2014 ACS Appl. Mater. Interfaces6 5319 [5] Yan Z, He X L, Li J P, Jian J and Gao X G 2012 Chin. Phys. Lett.29 070701 [6] Panahi N, Shirazi M and Ghoranneviss M 2016 Chin. Phys. Lett.33 066802 [7] Hsueh T J, Peng C H and Chen W S 2019 Sens. Actuators B304 127319 [8] Li Y Z, Feng Q J, Shi B, Gao C, Wang D Y and Liang H W 2020 Chin. Phys. B29 018102 [9] Wei A, Wang Z, Pan L H, Li W W, Xiong L, Dong X C and Huang W 2011 Chin. Phys. Lett.28 080702 [10] Xu L, Wang R, Liu Y and Dong L 2011 Chin. Phys. Lett.28 040701 [11] Ma J, Fan H, Zhang W, Sui J and Wang S 2019 Sens. Actuators B305 127456 [12] Geng W, Ma Z, Zhao Y, Yang J, He X, Duan L, Li F, Hou H and Zhang Q 2020 Sens. Actuators B325 128775 [13] Fujihara S, Maeda T, Ohgi H, Hosono E and Kim S H 2004 Langmuir20 6476 [14] Hernández-Ramírez F, Tarancón A, Casals O, Arbiol J, Romano-Rodríguez A and Morante J R 2007 Sens. Actuators B121 3 [15] Yoon J W, Choi S H, Kim J S, et al. 2016 NPG Asia Mater.8 e244 [16] Umar A, Ammar H Y, Kumar R, Ibrahim A A and Al-Assiri M S 2020 Sens. Actuators B304 127352 [17] Zhou Q, Xu L, Umar A, Chen W and Kumar R 2018 Sens. Actuators B256 656 [18] Mudra E, Shepa I, Milkovic O, Dankova Z and Dusza J 2019 Appl. Surf. Sci.480 876 [19] Liu T, Yu Z, Liu Y, Gao J and Liu F 2020 Sens. Actuators B318 128167 [20] Kou X, Meng F, Chen K, Wang T and Lu G 2020 Sens. Actuators B320 128292 [21] Guo J, Li Y, Jiang B, Gao H and Lu G 2020 Sens. Actuators B310 127780 [22] Park K R, Cho H B, Lee J, Song Y and Choa Y H 2019 Sens. Actuators B302 127179 [23] Wang D, Tang M, Fang H and Sun J 2020 Sens. Actuators B318 128290 [24] Bai S, Guo W, Sun J, Jiao L, Ye T, Chen A, Luo R and Li D 2016 Sens. Actuators B226 96 [25] Motaung D E, Mhlongo G H, Makgwane P R, Dhonge B P and Ray S S 2018 Sens. Actuators B254 984 [26] Park S H, Kim B Y, Jo Y K, Dai Z and Lee J H 2020 Sens. Actuators B309 127805 [27] Yu X X, Liu X S, Wu M Z, Sun Z Q, Li G and Chen X S 2014 J. Phys. Chem. C27 99 [28] Kou X, Wang C, Ding M, Feng C, Li X, Ma J, Zhang H, Sun Y and Lu G 2016 Sens. Actuators B236 425 [29] Choi S W, Jung S H and Kim S S 2011 Nanotechnology22 225501 [30] Kim J H, Lee J H, Mirzaei A, Kim H W and Kim S S 2017 Sens. Actuators B248 500 [31] Vladimirova S A, Rumyantseva M N, Filatova D G, Chizhov A S, Khmelevsky N O, Konstantinova E A, Kozlovsky V F, Marchevsky A V, Karakulina O M and Hadermann J 2017 J. Alloys Compd.721 249 [32] Tang W, Li D W, Du X J, Yu J and Sun Q Q 2019 IOP Conference Series:Materials Science and Engineering479 012116 [33] Bai S, Liu H, Luo R, Chen A and Li D 2014 RSC Adv.4 62862 [34] Du H, Yao P, Sun Y, Wang J and Wang H 2017 Sensors17 1822 [35] Liu C B, He Y and Wang S L 2015 Chin. Phys. B24 118501 [36] Ziabari M, Mottaghitalab V, Mcgovern S T and Haghi A K 2008 Chin. Phys. Lett.25 3071 [37] Du H, Wang J, Su M, Yao P and Yu N 2012 Sens. Actuators B166-167 746 [38] Kong J, Tan H R, Tan S Y, Li F, Wong S Y, Li X and Lu X 2010 Chem. Commun. Roy. Soc. Chem.46 8773 [39] Xia X, Dong X J, Wei Q F, Cai Y B and Lu K Y 2012 Express Polym. Lett.6 169 [40] Xiang H, Long Y, Yu X, Zhang X, Zhao N and Xu.J 2011 CrystEngComm13 4856 [41] Zafeiratos S, Dintzer T, Teschner D, Blume R, Knop-Gericke A and Schl G R 2010 J. Catal.269 309 [42] Xu Y, Ma T, Zheng L, Sun L and Zhang J 2018 Sens. Actuators B284 202 [43] Tang W, Yao M, Deng Y, Li X, Han N, Wu X and Chen Y 2016 Chem. Eng. J.306 709 [44] Liu J, Wang C, Yang Q, Gao Y, Zhou X, Liang X, Sun P and Lu G 2016 Sens. Actuators B224 128 [45] Yang F and Guo Z 2015 J. Colloid Interface Sci.448 265 [46] Kim H J and Lee J H 2014 Sens. Actuators B192 607 [47] Gardon M and Guilemany J M 2013 J. Mater. Sci. Mater. Electron.24 1410 [48] Wang Z, Li Z, Sun J, Zhang H, Wang W, Zheng W and Wang C 2010 J. Phys. Chem. C114 6100 [49] Mashock M, Yu K, Cui S, Mao S and Chen J 2012 ACS Appl. Mater. Interfaces4 4192 [50] Vladimirova S A, Rumyantseva M N, Filatova D G, Chizhov A S, Khmelevsky N O, Konstantinova E A, Kozlovsky V F, Marchevsky A V, Karakulina O M and Hadermann J 2017 J. Alloys Compd.721 249 [51] Rumyantseva M N, Vladimirova S A, Vorobyeva N A, Giebelhaus I and Gaskov A M 2018 Sens. Actuators B255 564 [52] Ju D, Xu H, Qiu Z, Zhang Z, Xu Q, Zhang J, Wang J and Cao B 2015 ACS Appl. Mater. Interfaces7 19163
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.