Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 017202    DOI: 10.1088/1674-1056/26/1/017202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Improved thermoelectric performance in p-type Bi0.48Sb1.52Te3 bulk material by adding MnSb2Se4

Binglei Cao(曹丙垒)1,2, Jikang Jian(简基康)1, Binghui Ge(葛炳辉)2, Shanming Li(李善明)2, Hao Wang(王浩)2, Jiao Liu(刘骄)1, Huaizhou Zhao(赵怀周)2
1. Physics and Optoelectronics Engineering College, Guangdong University of Technology, Guangzhou 510006, China;
2. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Bismuth telluride (Bi2Te3) based alloys, such as p-type Bi0.5Sb1.5Te3, have been leading candidates for near room temperature thermoelectric applications. In this study, Bi0.48Sb1.52Te3 bulk materials with MnSb2Se4 were prepared using high-energy ball milling and spark plasma sintering (SPS) process. The addition of MnSb2Se4 to Bi0.48Sb1.52Te3 increased the hole concentration while slightly decreasing the Seebeck coefficient, thus optimising the electrical transport properties of the bulk material. In addition, the second phases of MnSb2Se4 and Bi0.48Sb1.52Te3 were observed in the Bi0.48Sb1.52Te3 matrix. The nanoparticles in the semi-coherent second phase of MnSb2Se4 behaved as scattering centres for phonons, yielding a reduction in the lattice thermal conductivity. Substantial enhancement of the figure of merit, ZT, has been achieved for Bi0.48Sb1.52Te3 by adding an Mn0.8Cu0.2Sb2Se4 (2 mol%) sample, for a wide range of temperatures, with a peak value of 1.43 at 375 K, corresponding to ~40% improvement over its Bi0.48Sb1.52Te3 counterpart. Such enhancement of the thermoelectric (TE) performance of p-type Bi2Te3 based materials is believed to be advantageous for practical applications.
Keywords:  Bi0.48Sb1.52Te3      thermoelectric materials      semi-coherent second phase      ZT enhancement  
Received:  13 September 2016      Revised:  26 October 2016      Accepted manuscript online: 
PACS:  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  74.25.fg (Thermoelectric effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51472052 and Y6J1421A41).
Corresponding Authors:  Jikang Jian, Huaizhou Zhao     E-mail:  jianjikang@126.com;hzhao@iphy.ac.cn

Cite this article: 

Binglei Cao(曹丙垒), Jikang Jian(简基康), Binghui Ge(葛炳辉), Shanming Li(李善明), Hao Wang(王浩), Jiao Liu(刘骄), Huaizhou Zhao(赵怀周) Improved thermoelectric performance in p-type Bi0.48Sb1.52Te3 bulk material by adding MnSb2Se4 2017 Chin. Phys. B 26 017202

[1] Liu N, Luo X G, Zhang M L 2014 Chin. Phys. B 23 080502
[2] Disalvo F J 1999 Science 285 703
[3] Harman T C, Taylor P J, Walsh M P and LaForge B E 2002 Science 297 2229
[4] Wu S H, Ryosuke N, Masatsugu, Zhang Q S, Chihaya A 2014 Chin. Phys. B 23 098502
[5] Lin T, Zeng Z H and Wang C H 2014 Acta Phys. Sin. 63 197201(in Chinese)
[6] Kaur K and Kumar R 2016 Chin. Phys. B 25 026402
[7] Kim S, Lee K H, Mun H A, Kim H S, Hwang S W, Roh J W, Yang D J, Shin W H, Li X S, Lee Y H, Snyder G J and Kim S W 2015 Science 348 109
[8] Xie W J, Tang X F, Yan Y G, Zhang Q J and Tritt T M 2009 Appl. Phys. Lett. 94 102111
[9] Zheng Y, Zhang Q, Su X L, Xie H Y, Shu S C, Chen T L, Tan G J, Yan Y G, Tang X F, Uher C and Snyder G J 2015 Adv. Energy Mater. 5 1401391
[10] Poudel B, Hao Q, Ma Y, Lan Y C, Minnich A, Yu B, Yan X, Wang D Z, Muto A, Vashaee D, Chen X Y, Liu J M, Dresslhaus M S, Chen G and Ren Z F 2008 Science 320 634
[11] Li Y Y, Li D, Qin X Y, Yang X H, Liu Y F, Zhang J, Dou Y C, Song C J and Xin H X 2015 J. Mater. Chem. C 3 7045
[12] Li J H, Tan Q, Li J F, Liu D W, Li F, Li Z Y, Zou M M and Wang K 2013 Adv. Funct. Mater. 23 4317
[13] Djieutedjeu H, Makongo J P A, Rotaru A, Palasyuk A, Takas N J, Zhou X Y, Ranmohotti K G S, Spinu L, Uber C and Poudeu P F P 2011 Eur. J. Inorg. Chem. 26 3969
[14] Li S M, Zhao H Z, Zhang H, Ren G K, Liu N, Li D D, Yang C S, Jin S F, Shang D S, Wang W H, Lin Y H, Gu L and Chen X L 2015 RSC Adv. 5 99065
[15] Goldsmid H J 1965 The Thermal Properties of Solids, vo1. 1, (New York:Dover Publications, Inc), p. 62
[16] May A F, Toberer E S, Saramat A and Snyder G J 2009 Phys. Rev. B 80 125205
[17] Shi X Y, Pei Y Z, Snyder G J and Chen L D 2011 Energy Environ. Sci. 4 4086
[18] Korkosz R J, Chasapis T C, Lo S H, Doak J W, Kim Y J, Wu C I, Hatzikraniotis E, Hogan T P, Ssidman D N, Wolverton C, Dravid V P and Kanatzidis M G 2014 J. Am. Chem. Soc. 136 3225
[19] Xie H H, Wang H, Pei Y Z, Fu C G, Liu X H, Snyder G J, Zhao X B and Zhu T J 2013 Adv. Funct. Mater 23 5123
[20] Kim H S, Gibbs Z M, Tang Y L, Wang H and Snyder G J 2015 Appl. Phys. Lett. Mater. 3 041506
[21] Ma Y, Qing H, Poudel B, Lan Y H, Yu B, Wang D Z, Chen G and Ren Z F 2008 Nano Lett. 8 2580
[22] Hu L P, Zhu T J, Wang Y G, Xie H H, Zhao J X and Zhao X B 2014 NPG Asia Mater. 6 e88
[23] Djieutedjeu H, Zhou X Y, Chi H, Haldolaarachchige N, Ranmohotti K G S, Uber C, Young D and Poudeu P F P 2014 J. Mater. Chem. C 2 6199
[24] Gao M, Zhang J Y and Rowe D M 1996 p. 71
[25] Hsiao Y Y, Chang W C and Chen S L 2010 Energy 35 1447
[26] Kim H S, Liu W S, Chen G, Chu C W and Ren Z F 2015 PNAS 112 8205
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[3] Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers
Nan Lu(陆楠) and Jie Guan(管杰). Chin. Phys. B, 2022, 31(4): 047201.
[4] Recent advances in organic, inorganic, and hybrid thermoelectric aerogels
Lirong Liang(梁丽荣), Xiaodong Wang(王晓东), Zhuoxin Liu(刘卓鑫), Guoxing Sun(孙国星), and Guangming Chen(陈光明). Chin. Phys. B, 2022, 31(2): 027903.
[5] Enhancement of thermoelectric properties of SrTiO3/LaNb-SrTiO3 composite by different doping levels
Ke-Xian Wang(王柯鲜), Jun Wang(王俊), Yan Li(李艳), Tao Zou(邹涛), Xiao-Huan Wang(王晓欢), Jian-Bo Li(李建波), Zheng Cao(曹正), Wen-Jing Shi(师文静), Xinba Yaer(新巴雅尔). Chin. Phys. B, 2018, 27(4): 048401.
[6] Band engineering and precipitation enhance thermoelectric performance of SnTe with Zn-doping
Zhiyu Chen(陈志禹), Ruifeng Wang(王瑞峰), Guoyu Wang(王国玉), Xiaoyuan Zhou(周小元), Zhengshang Wang(王正上), Cong Yin(尹聪), Qing Hu(胡庆), Binqiang Zhou(周斌强), Jun Tang(唐军), Ran Ang(昂然). Chin. Phys. B, 2018, 27(4): 047202.
[7] Effect of Nb doping on microstructures and thermoelectric properties of SrTiO3 ceramics
Da-Quan Liu(刘达权), Yu-Wei Zhang(张玉伟), Hui-Jun Kang(康慧君), Jin-Ling Li(李金玲), Xiong Yang(杨雄), Tong-Min Wang(王同敏). Chin. Phys. B, 2018, 27(4): 047205.
[8] Nanoscale thermal transport: Theoretical method and application
Yu-Jia Zeng(曾育佳), Yue-Yang Liu(刘岳阳), Wu-Xing Zhou(周五星), Ke-Qiu Chen(陈克求). Chin. Phys. B, 2018, 27(3): 036304.
[9] Thermal stability and electrical transport properties of Ge/Sn-codoped single crystalline β-Zn4Sb3 prepared by the Sn-flux method
Hong-xia Liu(刘虹霞), Shu-ping Deng(邓书平), De-cong Li(李德聪), Lan-xian Shen(申兰先), Shu-kang Deng(邓书康). Chin. Phys. B, 2017, 26(2): 027401.
[10] Structural stabilities and electrical properties of Ba8Ga16-xCuxSn30 single crystals under high temperatures
Jin-Song Wang(王劲松), Feng Cheng(程峰), Hong-Xia Liu(刘红霞), De-Cong Li(李德聪), Lan-Xian Shen(申兰先), Shu-Kang Deng(邓书康). Chin. Phys. B, 2016, 25(6): 067402.
[11] Improved thermoelectric property of cation-substituted CaMnO3
Pradeep Kumar, Subhash C. Kashyap, Vijay Kumar Sharma, H. C. Gupta. Chin. Phys. B, 2015, 24(9): 098101.
[12] Synthesis and high temperature thermoelectric transport properties of Si-based type-I clathrates
Deng Shu-Kang(邓书康), Tang Xin-Feng(唐新峰), and Tang Run-Sheng(唐润生). Chin. Phys. B, 2009, 18(7): 3084-3089.
[13] Quick preparation and thermal transport properties of nanostructured β-FeSi2 bulk material
Li Han(李涵), Tang Xin-Feng(唐新峰), Cao Wei-Qiang(曹卫强), and Zhang Qing-Jie(张清杰). Chin. Phys. B, 2009, 18(1): 287-292.
No Suggested Reading articles found!