Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 104401    DOI: 10.1088/1674-1056/26/10/104401
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Performance of thermoelectric generator with graphene nanofluid cooling

Jiao-jiao Xing(邢姣娇), Zi-hua Wu(吴子华), Hua-qing Xie(谢华清), Yuan-yuan Wang(王元元), Yi-huai Li(李奕怀), Jian-hui Mao(毛建辉)
School of Environmental and Materials Engineering, Shanghai Polytechnic University, Shanghai 201209, China
Abstract  

Improvement of the heat transfer of the cold side is one of the approaches to enhance the performance of TEG systems. As a new type of heat transfer media, nanofluids can enhance the heat transfer performance of working liquid significantly. Based on a three-dimensional and steady-state numerical model,the heat transfer and thermoelectric conversion properties of TEG systems were studied. Graphene anoplatelet aqueous nanofluids were used as the coolants for the cold side of the TEG system to improve the heat transfer capacity of the cold side. The results showed that the heat absorbed by the hot side, voltage, output power, and conversion efficiency of the TEG system were increased greatly by the nanofluid coolants. The output power and the conversion efficiency using 0.1-wt% graphene nanoplatelet aqueous nanofluid as the coolant are enhanced by 26.39% and 14.74%, respectively.

Keywords:  thermoelectric devices      conversion efficiency      cooling enhancement      nanofluids  
Received:  19 February 2017      Revised:  06 April 2017      Accepted manuscript online: 
PACS:  44.05.+e (Analytical and numerical techniques)  
  44.10.+i (Heat conduction)  
  44.27.+g (Forced convection)  
Fund: 

Project supported by the Major Program of the National Natural Science Foundation of China (Grant No. 51590902), the National Natural Science Foundation of China (Grant N. 51476095), and the Program for Professor of Special Appointment (Young Eastern Scholar, QD2015052) at Shanghai Institutions of Higher Learning, and the Natural Science Foundation of Shanghai (Grant No. 14ZR1417000).

Corresponding Authors:  Zi-hua Wu     E-mail:  wuzihua@sspu.edu.cn

Cite this article: 

Jiao-jiao Xing(邢姣娇), Zi-hua Wu(吴子华), Hua-qing Xie(谢华清), Yuan-yuan Wang(王元元), Yi-huai Li(李奕怀), Jian-hui Mao(毛建辉) Performance of thermoelectric generator with graphene nanofluid cooling 2017 Chin. Phys. B 26 104401

[1] RiffatS B and Ma X L 2003 Appl. Therm. Eng. 23 913
[2] Rowe D M 1999 Renewable Energy 16 1251
[3] Grane D, Lagrandeur J and Jovovic V 2013 J. Electron. Mater. 42 1582
[4] Yu J L and Zhao H 2007 J. Power Sourc. 172 428
[5] Ono K and Suzuki R O 1998 JOM 50 49
[6] Charalambous P G, Maidment G G and Kalogirou S A 2006 Appl. Therm. Eng. 27 275
[7] Gou X L, Yang S W and Xiao H 2013 Energy 52 201
[8] Jia X D and Gao Y W 2015 Appl. Therm. Eng. 78 533
[9] Admasu B T and Luo X B 2013 International Conference on Electronic Packaging Technology 14 1260
[10] Meng F K, Chen L G and Sun F R 2011 Energy 36 3513
[11] Feng H, Qiu P and Tang Y 2016 Energy Environ. Sci. 10 956
[12] Wang H, Bai S and Chen L 2015 J. Electron. Mater. 44 4482
[13] Meir S, Stephanos C and Geballe T H 2013 Journal of Renewable and Sustainable Energy 5 043127
[14] Enescu D and Virjoghe E O 2014 Renewable and Sustainable Energy Reviews 38 903
[15] Chen W H, Wang C C and Hung C I 2014 Energy Conversion and Management 87 566
[16] Huang Y X, Wang X D and Cheng C H 2013 Energy 59 689
[17] Favarel C, Béléarrats J P and Kousksou T 2014 Energy 68 104
[18] Zhou M F, He Y L and Chen Y M 2014 Appl. Therm. Eng. 68 80
[19] Mehdi B and Morteza H 2013 Energy Conversion and Management 76 1125
[20] Faizal M, Saidur R and Mekhilef S 2013 Energy Conversion and Management 76 162
[21] Hajian R, Layeghi M and Sani K A 2012 Energy Conversion and Management 56 63
[22] Koo J and Kleinstreuer C 2004 Journal of Nanoparticle Research 6 577
[23] Peyghambarzadeh S M, Hashemabadi S H and Naraki M 2013 Appl. Therm. Eng. 52 8
[24] Naraki M, Peyghambarzadeh S M and Hashemabadi S H 2013 Int. J. Therm. Sci. 66 82
[25] Vermahmoudi Y, Peyghambarzadeh S M and Hashemabadi S H 2014 European Journal of Mechanics B:Fluids 44 32
[26] Zhou S Y, Sammakia B G and White B 2015 Int. J. Heat Mass Transfer 81 639
[27] Ehrali M, Sadeghinezhad E and Rosen M A 2015 Exp. Therm. Fluid Sci. 68 100
[28] Rafiee M A, Rafiee J and Wang Z 2009 ACS Nano 3 3884
[29] Kim H S, Liu W S and Ren Z F 2015 J. Appl. Phys. 118 115103
[1] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
[2] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[3] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[4] High efficiency and broad bandwidth terahertz vortex beam generation based on ultra-thin transmission Pancharatnam-Berry metasurfaces
Wenyu Li(李文宇), Guozhong Zhao(赵国忠), Tianhua Meng(孟田华), Ran Sun(孙然), and Jiaoyan Guo(郭姣艳). Chin. Phys. B, 2021, 30(5): 058103.
[5] Electronic and optical properties of 3N-doped graphdiyne/MoS2 heterostructures tuned by biaxial strain and external electric field
Dong Wei(魏东), Yi Li(李依), Zhen Feng(冯振), Gaofu Guo(郭高甫), Yaqiang Ma(马亚强), Heng Yu(余恒), Qingqing Luo(骆晴晴), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(11): 117103.
[6] Inhibiting radiative recombination rate to enhance quantum yields in a quantum photocell
Jing-Yi Chen(陈镜伊), Shun-Cai Zhao(赵顺才). Chin. Phys. B, 2020, 29(6): 064207.
[7] Improving compatibility between thermoelectric components through current refraction
K Song(宋坤), H P Song(宋豪鹏), C F Gao(高存法). Chin. Phys. B, 2018, 27(7): 077304.
[8] Tunable circularly-polarized turnstile-junction mode converter for high-power microwave applications
Xiao-Yu Wang(王晓玉), Yu-Wei Fan(樊玉伟), Ting Shu(舒挺), Cheng-Wei Yuan(袁成卫), Qiang Zhang(张强). Chin. Phys. B, 2018, 27(6): 068401.
[9] Efficient ternary organic solar cells with high absorption coefficient DIB-SQ as the third component
Hui-Xin Qi(齐慧欣), Bo-Han Yu(余泊含), Sai Liu(刘赛), Miao Zhang(张苗), Xiao-Ling Ma(马晓玲), Jian Wang(王健), Fu-Jun Zhang(张福俊). Chin. Phys. B, 2018, 27(5): 058802.
[10] Macro-performance of multilayered thermoelectric medium
Kun Song(宋坤), Hao-Peng Song(宋豪鹏), Cun-Fa Gao(高存法). Chin. Phys. B, 2017, 26(12): 127307.
[11] Photoemission cross section: A critical parameter in the impurity photovoltaic effect
Jiren Yuan(袁吉仁), Haibin Huang(黄海宾), Xinhua Deng(邓新华), Zhihao Yue(岳之浩), Yuping He(何玉平), Naigen Zhou(周耐根), Lang Zhou(周浪). Chin. Phys. B, 2017, 26(1): 018503.
[12] Optimal oxide-aperture for improving the power conversion efficiency of VCSEL arrays
Wang Wen-Juan (王文娟), Li Chong (李冲), Zhou Hong-Yi (周弘毅), Wu Hua (武华), Luan Xin-Xin (栾信信), Shi Lei (史磊), Guo Xia (郭霞). Chin. Phys. B, 2015, 24(2): 024209.
[13] β-FeSi2 as the bottom absorber of triple-junction thin-film solar cells:A numerical study
Yuan Ji-Ren (袁吉仁), Shen Hong-Lie (沈鸿烈), Zhou Lang (周浪), Huang Hai-Bin (黄海宾), Zhou Nai-Gen (周耐根), Deng Xin-Hua (邓新华), Yu Qi-Ming (余启名). Chin. Phys. B, 2014, 23(3): 038801.
[14] Subcooled pool boiling heat transfer in fractal nanofluids:A novel analytical model
Xiao Bo-Qi (肖波齐), Yang Yi (杨毅), Xu Xiao-Fu (许晓赋). Chin. Phys. B, 2014, 23(2): 026601.
[15] Analyses of the endoreversible Carnot cycle with entropy theory and entransy theory
Wang Wen-Hua (王文华), Cheng Xue-Tao (程雪涛), Liang Xin-Gang (梁新刚). Chin. Phys. B, 2013, 22(11): 110506.
No Suggested Reading articles found!