Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 028507    DOI: 10.1088/1674-1056/ac3504
Special Issue: SPECIAL TOPIC — Organic and hybrid thermoelectrics
SPECIAL TOPIC—Organic and hybrid thermoelectrics Prev   Next  

Donor-acceptor conjugated copolymer with high thermoelectric performance: A case study of the oxidation process within chemical doping

Liangjun Chen(陈凉君), Wei Wang(王维), Shengqiang Xiao(肖生强), and Xinfeng Tang(唐新峰)§
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Abstract  The doping process and thermoelectric properties of donor-acceptor (D-A) type copolymers are investigated with the representative poly([2,6'-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b] dithiophene]3-fluoro-2-[(2-ethylhexyl)-carbonyl]thieno[3,4-b]thiophenediyl)) (PTB7-Th). The PTB7-Th is doped by FeCl3 and only polarons are induced in its doped films. The results reveal that the electron-rich donor units within PTB7-Th lose electrons preferentially at the initial stage of the oxidation and then the acceptor units begin to be oxidized at a high doping concentration. The energy levels of polarons and the Fermi level of the doped PTB7-Th remain almost unchange with different doping levels. However, the morphology of the PTB7-Th films could be deteriorated as the doping levels are improved, which is one of the main reasons for the decrease of electrical conductivity at the later stage of doping. The best electrical conductivity and power factor are obtained to be 42.3 S·cm-1 and 33.9 μW·mK-2, respectively, in the doped PTB7-Th film at room temperature. The power factor is further improved to 38.3 μW·mK-2 at 75℃. This work may provide meaningful experience for development of D-A type thermoelectric copolymers and may further improve the doping efficiency.
Keywords:  donor-acceptor copolymer      doping      oxidization process      thermoelectric performance  
Received:  22 September 2021      Revised:  25 October 2021      Accepted manuscript online:  01 November 2021
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
Fund: This work was supported by the National Key Research and Development Program of China (Grant No. Q2019YFE0107200).
Corresponding Authors:  Shengqiang Xiao, Xinfeng Tang     E-mail:;

Cite this article: 

Liangjun Chen(陈凉君), Wei Wang(王维), Shengqiang Xiao(肖生强), and Xinfeng Tang(唐新峰) Donor-acceptor conjugated copolymer with high thermoelectric performance: A case study of the oxidation process within chemical doping 2022 Chin. Phys. B 31 028507

[1] Su X L, Wei P, Li H, Liu W, Yan Y G, Li P, Su C Q, Xie C J, Zhao W Y, Zhai P C, Zhang Q J, Tang X F and Uher C 2017 Adv. Mater. 29 1602013
[2] Pourkiaei S M, Ahmadi M H, Sadeghzadeh M, Moosavi S, Pourfayaz F, Chen L G, Pour Y M A and Kumar R 2019 Energy 186 115849
[3] Li D L, Gong Y N, Chen Y X, Lin J M, Khan Q, Zhang Y P, Li Y, Zhang H and Xie H P 2020 Nano-Micro Lett. 12 36
[4] Xia X G, Zhang Q, Zhou W B, Xiao Z J, Xi W, Wang Y C and Zhou W Y 2021 Chin. Phys. B 30 078801
[5] Xu S D, Shi X L, Dargusch M, Di C A, Zou J and Chen Z G 2021 Prog. Mater. Sci. 121 100840
[6] Deng L and Chen G M 2021 Nano Energy 80 105448
[7] Chen G M, Xu W and Zhu D B 2017 J. Mater. Chem. C 5 4350
[8] Prunet G, Pawula F, Fleury G, Cloutet E, Robinson A J, Hadziioannou G and Pakdel A 2021 Mater. Today Phys. 18 100402
[9] Wang L M, Zhang Z M, Liu Y C, Wang B R, Fang L, Qiu J J, Zhang K and Wang S R 2018 Nat. Commun. 9 3817
[10] Wang H, Ail U, Gabrielsson R, Berggren M and Crispin X 2015 Adv. Energy Mater. 5 1500044
[11] Ansari M A, Mohiuddin S, Kandemirli F and Malik M I 2018 RSC Advances 8 8319
[12] Xiao S Q, Zhang Q Q and You W 2017 Adv. Mater. 29 1601391
[13] Liu Y, Ogawa K and Schanze K S 2009 J. Photoch. Photobiol. C 10 173
[14] Lu K and Liu Y Q 2010 Curr. Org. Chem. 14 2017
[15] Li J, Wang H Y, Li Y, Zhang Q Y and Jia Y 2016 Acta Phys. Sin. 65 103101 (in Chinese)
[16] Joo Y, Huang L F, Eedugurala N, London A E, Kumar A, Wong B M, Boudouris B W and Azoulay J D 2018 Macromolecules 51 3886
[17] Li B Z, Li X X, Yang F, Chen Y J, Mao X H, Wan S X, Xin H, Yan S T, Wang M L, Gao C M and Wang L 2021 ACS Appl. Energy Mater. 4 4662
[18] Li H, Song J, Xiao J, Wu L L, Katz H E and Chen L D 2020 Adv. Funct. Mater. 30 2004378
[19] Lee J, Kim J, Nguyen T L, Kim M, Park J, Lee Y, Hwang S, Kwon Y W, Kwak J and Woo H Y 2018 Macromolecules 51 3360
[20] Beaujuge P M, Amb C M and Reynolds J R 2010 Accounts Chem. Res. 43 1396
[21] Li Y F and Zou Y P 2008 Adv. Mater. 20 2952
[22] Huo L J, Zhang S Q, Guo X, Xu F, Li Y F and Hou J H 2011 Angew. Chem. Int. Ed. 50 9697
[23] Gao J H, Wang W, Zhang S J, Xiao S Q, Zhan C, Yang M Y, Lu X H and You W 2018 J. Mater. Chem. A 6 179
[24] Lu L Y and Yu L P 2014 Adv. Mater. 26 4413
[25] Lai C H, Li J J, Xiang X Z, Wang L and Liu D Q 2018 Poly. Composit. 39 126
[26] Fernandes M R, Garcia J R, Schultz M S and Nart F C 2005 Thin Solid Films 474 279
[27] Bubnova O and Crispin X 2012 Energy Environ. Sci. 5 9345
[28] Kroon R, Mengistie D A, Kiefer D, Hynynen J, Ryan J D, Yu L Y and Müller C 2016 Chem. Soc. Rev. 45 6147
[29] Zhang Q, Sun Y M, Xu W and Zhu D B 2014 Adv. Mater. 26 6829
[30] Yamamoto J and Furukawa Y 2015 J. Phys. Chem. B 119 4788
[31] Liu C, Yi C, Wang K, Yang Y L, Bhatta R S, Tsige M, Xiao S Y and Gong X 2015 ACS Appl. Mater. Interfaces 7 4928
[32] Mai C K, Schlitz R A, Su G M, Spitzer D, Wang X, Fronk S L, Cahill D G, Chabinyc M L and Bazan G C 2014 J. Am. Chem. Soc. 136 13478
[33] Shi K, Zhang F J, Di C A, Yan T W, Zou Y, Zhou X, Zhu D B, Wang J Y and Pei J 2015 J. Am. Chem. Soc. 137 6979
[34] Furukawa Y, Akiyama K, Enokida I and Yamamoto J 2016 Vib. Spectrosc. 85 29
[35] Hu Y J, Liu X F, Jiang F X, Zhou W Q, Liu C C, Duan X M and Xu J K 2017 J. Phys. Chem. B 121 9281
[36] Jung I H, Hong C T, Lee U H, Kang Y H, Jang K S and Cho S Y 2017 Sci. Rep. 7 44704
[37] Scholes D T, Yee P Y, Lindemuth J R, Kang H, Onorato J, Ghosh R, Luscombe C K, Spano F C, Tolbert S H and Schwartz B J 2017 Adv. Funct. Mater. 27 1702654
[38] Enengl C, Enengl S, Pluczyk S, Havlicek M, Lapkowski M, Neugebauer H and Ehrenfreund E 2016 ChemPhysChem 17 3836
[39] Fukuda T, Toda A, Takahira K, Kuzuhara D and Yoshimoto N 2017 Org. Electron. 48 96
[40] Noh J, Jeong S and Lee J Y 2016 Nat. Commun. 7 12374
[41] Grey J, Thomas A and Gao J 2015 SPIE Nanoscience + Engineering, August 20, 2015, San Diego, California, USA, p. 95490V
[42] Razzell-Hollis J, Tsoi W C and Kim J S 2013 J. Mater. Chem. C 1 6235
[43] Razzell-Hollis J, Wade J, Tsoi W C, Soon Y, Durrant J and Kim J S 2014 J. Mater. Chem. A 2 20189
[44] Kim T Y, Kim J E and Suh K S 2006 Poly. Inter. 55 80
[45] Heon K S, Heo S, Ihn S G, Yun S, Hwan P J, Chung Y, Lee E, Park G and Yun D J 2014 Appl. Phys. Lett. 104 243303
[46] Sabbatini L, Malitesta C, De G E, Losito I, Torsi L and Zambonin P G 1999 J. Electron Spectrosc. Relat. Phenom. 100 35
[47] Kettle J, Ding Z, Horie M and Smith G C 2016 Org. Electron. 39 222
[48] Jeong J, Seo J, Nam S, Han H, Kim H, Anthopoulos T D, Bradley D D and Kim Y 2016 Adv. Sci. 3 1500269
[49] Bakshi A K and Ladik J 1988 Solid State Commun. 65 1203
[50] Das M and Ramasesha S 2006 J. Chem. Sci. 118 67
[51] Darlatt E, Muhsin B, Roesch R, Lupulescu C, Roth F, Kolbe M, Gottwald A, Hoppe H and Richter M 2016 Nanotechnology 27 324005
[52] Prasad K S, Rao A, Chauhan N S, Bhardwaj R, Vishwakarma A and Tyagi K 2018 Appl. Phys. A 124 98
[53] Liu J, Garman M P, Dong J J, Van D Z B, Qiu L, Portale G, Hummelen J C and Koster L J A 2019 ACS Appl. Energy Mater. 2 6664
[1] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[2] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[3] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[4] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[5] Broadband chirped InAs quantum-dot superluminescent diodes with a small spectral dip of 0.2 dB
Hong Wang(王虹), Zunren Lv(吕尊仁), Shuai Wang(汪帅), Haomiao Wang(王浩淼), Hongyu Chai(柴宏宇), Xiaoguang Yang(杨晓光), Lei Meng(孟磊), Chen Ji(吉晨), and Tao Yang(杨涛). Chin. Phys. B, 2022, 31(9): 098104.
[6] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
Jianxiang Gao(高健翔), Kai Sun(孙凯), Hao Guo(郭浩), Zhengyao Li(李正耀), Jianlin Wang(王建林), Xiaobai Ma(马小柏), Xuedong Bai(白雪东), and Dongfeng Chen(陈东风). Chin. Phys. B, 2022, 31(9): 098201.
[7] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[8] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[9] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[10] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[11] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
[12] MOS-based model of four-transistor CMOS image sensor pixels for photoelectric simulation
Bing Zhang(张冰), Congzhen Hu(胡从振), Youze Xin(辛有泽), Yaoxin Li(李垚鑫), Zhuoqi Guo(郭卓奇), Zhongming Xue(薛仲明), Li Dong(董力), Shanzhe Yu(于善哲), Xiaofei Wang(王晓飞), Shuyu Lei(雷述宇), and Li Geng(耿莉). Chin. Phys. B, 2022, 31(5): 058503.
[13] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[14] Theoretical study on the improvement of the doping efficiency of Al in 4H-SiC by co-doping group-IVB elements
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yixiao Qian(钱怡潇), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(4): 046104.
[15] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
No Suggested Reading articles found!