Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 027902    DOI: 10.1088/1674-1056/ac373c
RAPID COMMUNICATION Prev   Next  

Determination of the surface states from the ultrafast electronic states in a thermoelectric material

Tongyao Wu(吴桐尧)1, Hongyuan Wang(王洪远)2, Yuanyuan Yang(杨媛媛)1, Shaofeng Duan(段绍峰)1, Chaozhi Huang(黄超之)1, Tianwei Tang(唐天威)1, Yanfeng Guo(郭艳峰)2, Weidong Luo(罗卫东)3, and Wentao Zhang(张文涛)1,†
1 Key Laboratory of Artificial Structures and Quantum Control(Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;
2 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China;
3 Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  We reveal the electronic structure in YbCd2Sb2, a thermoelectric material, by angle-resolved photoemission spectroscopy (ARPES) and time-resolved ARPES (trARPES). Specifically, three bulk bands at the vicinity of the Fermi level are evidenced near the Brillouin zone center, consistent with the density functional theory (DFT) calculation. It is interesting that the spin-unpolarized bulk bands respond unexpectedly to right- and left-handed circularly polarized probe. In addition, a hole band of surface states, which is not sensitive to the polarization of the probe beam and is not expected from the DFT calculation, is identified. We find that the non-equilibrium quasiparticle recovery rate is much smaller in the surface states than that of the bulk states. Our results demonstrate that the surface states can be distinguished from the bulk ones from a view of time scale in the nonequilibrium physics.
Keywords:  electronic band structure      YbCd2Sb2      surface states      time- and angle-resolved photoemission spectroscopy  
Received:  31 August 2021      Revised:  15 October 2021      Accepted manuscript online:  06 November 2021
PACS:  79.60.-i (Photoemission and photoelectron spectra)  
  71.15.-m (Methods of electronic structure calculations)  
  73.20.At (Surface states, band structure, electron density of states)  
  78.47.J- (Ultrafast spectroscopy (<1 psec))  
Fund: W.T.Z. acknowledges support from the National Natural Science Foundation of China (Grant No. 11974243) and additional support from a Shanghai talent program. W.L. acknowledges support from the National Natural Science Foundation of China (Grant No. 11521404). Y.F.G. acknowledges the support by the Natural Science Foundation of Shanghai, China (Grant No. 17ZR1443300).
Corresponding Authors:  Wentao Zhang     E-mail:  wentaozhang@sjtu.edu.cn

Cite this article: 

Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛) Determination of the surface states from the ultrafast electronic states in a thermoelectric material 2022 Chin. Phys. B 31 027902

[1] Sobota J A, He Y and Shen Z X 2021 Rev. Mod. Phys. 93 025006
[2] Zhou X J, He S L, Liu G D, Zhao L, Yu L and Zhang W T 2018 Reports on Progress in Physics 81 062101
[3] LaShell S, McDougall B A and Jensen E 1996 Phys. Rev. Lett. 77 3419
[4] Tamai A, Meevasana W, King P D C, Nicholson C W, de la Torre A, Rozbicki E and Baumberger F 2013 Phys. Rev. B 87 075113
[5] Damascelli A, Lu D H, Shen K M, Armitage N P, Ronning F, Feng D L, Kim C, Shen Z X, Kimura T, Tokura Y, Mao Z Q and Macno Y 2000 Phys. Rev. Lett. 85 5194
[6] Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J and Hasan M Z 2008 Nature 452 970
[7] Chen Y 2012 Frontiers of Physics 7 175
[8] Lugovskoy A V and Bray I 1999 Phys. Rev. B 60 3279
[9] Kampfrath T, Perfetti L, Schapper F, Frischkorn C and Wolf M 2005 Phys. Rev. Lett. 95 187403
[10] Carbone F Yang D S, Giannini E and Zewail A H 2008 Proc. Natl. Acad. Sci. USA 105 20161
[11] Wang X J, Tang M B, Chen H H, Yang X X, Zhao J T, Burkhardt and Grin Y 2009 Appl. Phys. Lett. 94 092106
[12] Cao Q G, Zhang H, Tang M B, Chen H H, Yang X X, Grin Y and Zhao J T 2010 J. Appl. Phys. 107 053714
[13] Feng J H, Wang W, Huang S, Jiang B B, Zhu B, Zhou Y, Cui J, Lin P J, Xie L and He J Q 2021 ACS Applied Energy Materials 4 913
[14] Artmann A, Mewis A, Poepke M and Michels G 1996 Zeitchrift fur Anorganische und Allgemeine Chemie 622 679
[15] Su H, Gong B C, Shi W J, et al. 2020 APL Materials 8 011109
[16] Yang Y, Tang T, Duan S, Zhou C, Hao D and Zhang W 2019 Rev. Sci. Instruments 90 063905
[17] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[18] Hohenberg and Kohn W 1964 Phys. Rev. 136 B864
[19] Kresse G and Furthmüller 1996 Phys. Rev. B 54 11169
[20] Blöchl P E 1994 Phys. Rev. B 50 17953
[21] Sobota J A, Yang S, Analytis J G, Chen Y L, Fisher I R, Kirchmann P S and Shen Z X 2012 Phys. Rev. Lett. 108 117403
[22] Park S R, Han J, Kim C, Koh Y Y, Kim C, Lee H, Choi H J, Han J H, Lee K D, Hur N J, Arita M, Shimada K, Namatame H, Taniguchi M 2012 Phys. Rev. Lett. 108 046805
[23] Wag Y H and Gedik N 2013 Physica Status Solidi-Rapid Research Letters 7 64
[24] Jozwiak C, Park C H, Gotlieb K, Hwang C, Lee D H, Louie S G, Denlinger J D, Rotundu C R, Birgeneau R J, Hussain Z and Lanzara A 2013 Nat. Phys. 9 293
[25] Moser S 2017 Journal of Electron Spectroscopy and Related Phenomena 214 29
[26] Borisenko S V, Kordyuk A A, Koitzsch A, Kim T K, Nenkov K A, Knupfer M, Fink J, Grazioli C, Turchini S and Berger H 2004 Phys. Rev. Lett. 92 207001
[27] Arpiainen V, Bansil A and Lindroos M 2009 Phys. Rev. Lett. 1030 067005
[28] Lindroos M, Arpiainen V and Bansil A 2010 Phys. Rev. Lett. 105 189702
[1] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[2] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[3] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[4] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[5] Passivation of PEA+ to MAPbI3 (110) surface states by first-principles calculations
Wei Hu(胡伟), Ying Tian(田颖), Hong-Tao Xue(薛红涛), Wen-Sheng Li(李文生), and Fu-Ling Tang(汤富领). Chin. Phys. B, 2021, 30(4): 047101.
[6] Distribution of donor states on the surfaceof AlGaN/GaN heterostructures
Yue-Bo Liu(柳月波), Hong-Hui Liu(刘红辉), Jun-Yu Shen(沈俊宇), Wan-Qing Yao(姚婉青), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(12): 128102.
[7] Abnormal phenomenon of source-drain current of AlGaN/GaN heterostructure device under UV/visible light irradiation
Yue-Bo Liu(柳月波), Jun-Yu Shen(沈俊宇), Jie-Ying Xing(邢洁莹), Wan-Qing Yao(姚婉青), Hong-Hui Liu(刘红辉), Ya-Qiong Dai(戴雅琼), Long-Kun Yang(杨隆坤), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(11): 117302.
[8] Electronic structure and spatial inhomogeneity of iron-based superconductor FeS
Chengwei Wang(王成玮), Meixiao Wang(王美晓), Juan Jiang(姜娟), Haifeng Yang(杨海峰), Lexian Yang(杨乐仙), Wujun Shi(史武军), Xiaofang Lai(赖晓芳), Sung-Kwan Mo, Alexei Barinov, Binghai Yan(颜丙海), Zhi Liu(刘志), Fuqiang Huang(黄富强), Jinfeng Jia(贾金峰), Zhongkai Liu(柳仲楷), Yulin Chen(陈宇林). Chin. Phys. B, 2020, 29(4): 047401.
[9] Pressure-dependent physical properties of cubic Sr BO3 ( B=Cr, Fe) perovskites investigated by density functional theory
Md Zahid Hasan, Md Rasheduzzaman, and Khandaker Monower Hossain. Chin. Phys. B, 2020, 29(12): 123101.
[10] Surface states modulated exchange interaction in Bi2Se3/thulium iron garnet heterostructures
Hai-Bin Shi(石海滨), Li-Qin Yan(闫丽琴), Yang-Tao Su(苏仰涛), Li Wang(王力), Xin-Yu Cao(曹昕宇), Lin-Zhu Bi(毕林竹), Yang Meng(孟洋), Yang Sun(孙阳), and Hong-Wu Zhao(赵宏武). Chin. Phys. B, 2020, 29(11): 117302.
[11] Electronic structure of correlated topological insulator candidate YbB6 studied by photoemission and quantum oscillation
T Zhang(张腾), G Li(李岗), S C Sun(孙淑翠), N Qin(秦娜), L Kang(康璐), S H Yao(姚淑华), H M Weng(翁红明), S K Mo, L Li(李璐), Z K Liu(柳仲楷), L X Yang(杨乐仙), Y L Chen(陈宇林). Chin. Phys. B, 2020, 29(1): 017304.
[12] Physical properties of ternary thallium chalcogenes Tl2MQ3 (M=Zr, Hf; Q=S, Se, Te) via ab-initio calculations
Engin Ateser, Oguzhan Okvuran, Yasemin Oztekin Ciftci, Haci Ozisik, Engin Deligoz. Chin. Phys. B, 2019, 28(10): 106301.
[13] Density functional theory analysis of electronic structure and optical properties of La-doped Cd2SnO4 transparent conducting oxide
Mei Tang(汤梅), Jia-Xiang Shang(尚家香), Yue Zhang(张跃). Chin. Phys. B, 2018, 27(1): 017101.
[14] Measurement of the bulk and surface bands in Dirac line-node semimetal ZrSiS
Guang-Hao Hong(洪光昊), Cheng-Wei Wang(王成玮), Juan Jiang(姜娟), Cheng Chen(陈成), Sheng-Tao Cui(崔胜涛), Hai-Feng Yang(杨海峰), Ai-Ji Liang(梁爱基), Shuai Liu(刘帅), Yang-Yang Lv(吕洋洋), Jian Zhou(周健), Yan-Bin Chen(陈延彬), Shu-Hua Yao(姚淑华), Ming-Hui Lu(卢明辉), Yan-Feng Chen(陈延峰), Mei-Xiao Wang(王美晓), Le-Xian Yang(杨乐仙), Zhong-Kai Liu(柳仲楷), Yu-Lin Chen(陈宇林). Chin. Phys. B, 2018, 27(1): 017105.
[15] Elastic, thermodynamic, electronic, and optical properties of recently discovered superconducting transition metal boride NbRuB:An ab-initio investigation
F Parvin, S H Naqib. Chin. Phys. B, 2017, 26(10): 106201.
No Suggested Reading articles found!