Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 027302    DOI: 10.1088/1674-1056/ac2487
Special Issue: SPECIAL TOPIC — Organic and hybrid thermoelectrics
SPECIAL TOPIC—Organic and hybrid thermoelectrics Prev   Next  

Enhanced thermoelectric performance of PEDOT: PSS films via ionic liquid post-treatment

Jiaji Yang(杨家霁)1,2, Xuejing Li(李雪晶)2,†, Yanhua Jia(贾艳华)1, Jiang Zhang(张弜)1, and Qinglin Jiang(蒋庆林)1,‡
1 Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China;
2 Department of Physics, Jiangxi Science and Technology Normal University, Nanchang 330013, China
Abstract  Thermoelectric (TE) energy harvesting can effectively convert waste heat into electricity, which is a crucial technology to solve energy concerns. As a promising candidate for energy conversion, poly(3,4-ethylenedioxythiophene):poly (styrene sulfonate) (PEDOT:PSS) has gained significant attention owing to its easy doping, high transparency, and solution processability. However, the TE performance of PEDOT:PSS still needs to be further enhanced. Herein, different approaches have been applied for tuning the TE properties:(i) direct dipping PEDOT:PSS thin films in ionic liquid; (ii) post-treatment of the films with concentrated sulfuric acid (H2SO4), and then dipping in ionic liquid. Besides, the same bis(trifluoromethanesulfonyl)amide (TFSI) anion and different cation salts, including 1-ethyl-3-methylimidazolium (EMIM+) and lithium (Li+), are selected to study the influence of varying cation types on the TE properties of PEDOT:PSS. The Seebeck coefficient and electrical conductivity of the PEDOT:PSS film treated with H2SO4EMIM:TFSI increase simultaneously, and the resulting maximum power factor is 46.7 μW·m-1·K-2, which may be attributed to the ionic liquid facilitating the rearrangement of the molecular chain of PEDOT. The work provides a reference for the development of organic films with high TE properties.
Keywords:  PEDOT:PSS      ionic liquid      thermoelectric performance  
Received:  29 July 2021      Revised:  02 September 2021      Accepted manuscript online:  08 September 2021
PACS:  73.50.Lw (Thermoelectric effects) (Solutions and ionic liquids)  
  82.35.Cd (Conducting polymers)  
Fund: Project supported by the Foundation of Guangzhou Science and Technology Project (B3210530), and the Open Fund of the State Key Laboratory of Luminescent Materials and Devices (South China University of Technology, 2019-skllmd-01).
Corresponding Authors:  Xuejing Li, Qinglin Jiang     E-mail:;

Cite this article: 

Jiaji Yang(杨家霁), Xuejing Li(李雪晶), Yanhua Jia(贾艳华), Jiang Zhang(张弜), and Qinglin Jiang(蒋庆林) Enhanced thermoelectric performance of PEDOT: PSS films via ionic liquid post-treatment 2022 Chin. Phys. B 31 027302

[1] He J and Tritt T M 2017 Science 357 1369
[2] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[3] Jiang Q L, Sun H D, Zhao D K, Zhang F L, Hu D H, Jiao F, Qin L Q, Linseis V, Fabiano S and Crispin X 2020 Adv. Mater. 32 2070335
[4] Li C C, Jiang F X, Liu C C, Liu P P and Xu J K 2019 Applied Materials Today 15 543
[5] Li X, Wang T Z, Jiang F X, Liu J, Liu P, Liu G Q, Xu J K, Liu C C and Jiang Q L 2019 J. Alloys Compd. 781 744
[6] Du Y, Chen J G, Meng Q F, Dou Y C, Xu J Y and Shen S Z 2020 Vacuum 178 109384
[7] Zou Q, Shang H J, Huang D X, Li T G, Xie B W, Gu H W and Ding F Z 2021 Soft Sci. 1 2
[8] Li M, Luo C, Zhang J, Yang J J, Xu J K, Yao W Q, Tan R R, Duan X M and Jiang F X 2020 Surf. and Interfaces 21 100759
[9] Liang L R, Chen G M and Guo C Y 2017 Mater. Chem. Front. 1 380
[10] Yang J J, Jiang Q L, Zhang J, Xu J K, Liu J, Liu P P, Liu G Q, Wang Y Y and Jiang F X 2020 Synth. Met. 269 116546
[11] Wang L M, Yao Q, Xiao J X, Zeng K Y, Shi W, Qu S Y and Chen L D 2016 Chem. Asian J. 11 1955
[12] Jia Y H, Liu C, Liu J, Liu C C, Xu J K, Li X J, Shen L L, Jiang Q L, Wang X D, Yang J and Jiang F X 2019 J. Polym. Sci., Part B:Polym. Phys. 57 257
[13] Bubnova O, Khan Z U, Malti A, Braun S, Fahlman M, Berggren M and Crispin X 2011 Nat. Mater. 10 429
[14] Wu M Y, Duan J S, Feng K, Yu H Y and Xu L 2021 Org. Electron. 90 106068
[15] Xiong J H, Wang L Y, Xu J K, Liu C C, Zhou W Q, Shi H, Jiang Q L and Jiang F X 2016 J. Mater. Sci.:Mater. Electron. 27 1769
[16] Wang X D, Meng F L, Tang H T, Gao Z M, Li S, Jin S, Jiang Q L, Jiang F X and Xu J K 2018 Synth. Met. 235 42
[17] Fan Z and Ouyang J Y 2019 Adv. Electron. Mater. 5 1800769
[18] Bubnova O, Khan Z U, Wang H, Braun S, Evans D R, Fabretto M, Hojati-Talemi P, Dagnelund D, Arlin J B, Geerts Y H, Desbief S, Breiby D W, Andreasen J W, Lazzaroni R, Chen W M, Zozoulenko I, Fahlman M, Murphy P J, Berggren M and Crispin X 2013 Nat. Mater. 13 190
[19] Xu Y W, Jia Y H, Liu P P, Jiang Q L, Hu D H and Ma Y G 2021 Chem. Eng. J. 404 126552
[20] Ouyang J Y 2013 ACS Appl. Mater. Interfaces 5 13082
[21] Li Q K, Deng M J, Zhang S M, Zhao D K, Jiang Q L, Guo C F, Zhou Q and Liu W S 2019 J. Mater. Chem. C 7 4374
[22] Luo J J, Billep D, Blaudeck T, Sheremet E, Rodriguez R D, Zahn D R, Toader M, Hietschold M, Otto T and Gessner T 2014 J. Appl. Phys. 115 054908
[23] Kim J Y, Jung J H, Lee D E and Joo J 2002 Synth. Met. 126 311
[24] Jiang F X, Xu J K, Lu B Y, Xie Y, Huang R J and Li L F 2008 Chin. Phys. Lett. 25 2202
[25] Li X J, Liu C C, Zhou W Q, Duan X M, Du Y K, Xu J K, Li C C, Liu J, Jia Y H, Liu P P, Jiang Q L, Luo C, Liu C and Jiang F X 2019 ACS Appl. Mater. Interfaces 11 8138
[26] Park H, Lee S H, Kim F S, Choi H H, Cheong I W and Kim J H 2014 J. Mater. Chem. A 2 6532
[27] Feng K, Xu L, Xiong Y, Sun L, Yu H Y, Wu M Y, Thant A A and Hu B 2020 J. Mater. Chem. C 8 3914
[28] Li Q K, Zhou Q, Wen L and Liu W S 2020 J. Materiomics 6 119
[29] Wei Q S, Mukaida M, Naitoh Y and Ishida T 2013 Adv. Mater. 25 2831
[30] Teo M Y, Kim N, Kee S, Kim B S, Kim G, Hong S, Jung S and Lee K 2017 ACS Appl. Mater. Interfaces 9 819
[31] Li X, Liu Z, Zhou Z K, Gao H Y, Liang G D, Rauber D, Kay C W and Zhang P 2021 ACS Appl. Polym. Mater. 3 98
[32] Liu C C, Xu J K, Lu B Y, Yue R R and Kong F F 2012 J. Electron. Mater. 41 639
[33] Shu Y, Odunmbaku G O, He Y J, Zhou Y L, Cheng H L, Ouyang J Y and Sun K 2021 Appl. Phys. Lett. 118 103902
[34] Fan Z, Du D H, Yu Z M, Li P C, Xia Y J and Ouyang J Y 2016 ACS Appl. Mater. Interfaces 8 23204
[35] Kee S, Kim N, Kim B S, Park S, Jang Y H, Lee S H, Kim J, Kim J, Kwon S and Lee K 2016 Adv. Mater. 28 8625
[36] Xiong J H, Jiang F X, Zhou W Q, Liu C C and Xu J K 2015 RSC Adv. 5 60708
[37] Kim N, Kee S, Lee S H, Lee B H, Kahng Y H, Jo Y R, Kim B J and Lee K 2014 Adv. Mater. 26 2268
[38] Fan Z, Li P C, Du D H and Ouyang J Y 2017 Adv. Energy Mater. 7 1602116
[39] Saxena N, Pretzl B, Lamprecht X, Biessmann L, Yang D, Li N, Bilko C, Bernstorff S and Muller P 2019 ACS Appl. Mater. Interfaces 11 8060
[40] Li X, Liu Z, Zhou Z K, Gao H Y, Liang G D, Rauber D, Kay W M and Zhang P 2020 ACS Appl. Polym. Mater. 3 98
[41] Yamashita Y, Tsurumi J, Ohno M, Fujimoto R, Kumagai S, Kurosawa T, Okamoto T, Takeya J and Watanabe S 2019 Nature 572 634
[42] Lee H M, Anoop G, Lee H J, Kim W S and Jo J Y 2019 RSC Adv. 9 11595
[43] Jiang Q L, Lan X Q, Liu C C, Shi H, Zhu Z Y, Zhao F, Xu J K and Jiang F X 2018 Mater. Chem. Front. 2 679
[44] Yemata T A, Zheng Y, Kyaw A K K, Wang X Z, Song J, Chin W S and Xu J W 2020 RSC Adv. 10 1786
[45] Lee S H, Park H, Kim S, Son W, Cheong I W and Kim J H 2014 J. Mater. Chem. A 2 7288
[46] Jonathan A, Matthew R B, James M G and Matthew J C 2020 Polymers 12 559
[47] Yun D J, Jung J, Kim K H, Ra H, Kim J M, Choi B S, Jang J, Seol M and Jeong Y J 2021 Appl. Surf. Sci. 553 149584
[1] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[2] Fast-speed self-powered PEDOT: PSS/α-Ga2O3 nanorod array/FTO photodetector with solar-blind UV/visible dual-band photodetection
Ming-Ming Fan(范明明), Kang-Li Xu(许康丽), Ling Cao(曹铃), and Xiu-Yan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 048501.
[3] Enhancing the photo-luminescence stability of CH3NH3PbI3 film with ionic liquids
Weifeng Ma(马威峰), Chunjie Ding(丁春杰), Nasrullah Wazir, Xianshuang Wang(王宪双), Denan Kong(孔德男), An Li(李安), Bingsuo Zou(邹炳锁), and Ruibin Liu(刘瑞斌). Chin. Phys. B, 2022, 31(3): 037802.
[4] Recent advances in organic, inorganic, and hybrid thermoelectric aerogels
Lirong Liang(梁丽荣), Xiaodong Wang(王晓东), Zhuoxin Liu(刘卓鑫), Guoxing Sun(孙国星), and Guangming Chen(陈光明). Chin. Phys. B, 2022, 31(2): 027903.
[5] Donor-acceptor conjugated copolymer with high thermoelectric performance: A case study of the oxidation process within chemical doping
Liangjun Chen(陈凉君), Wei Wang(王维), Shengqiang Xiao(肖生强), and Xinfeng Tang(唐新峰). Chin. Phys. B, 2022, 31(2): 028507.
[6] Dynamic crossover in [VIO2+][Tf2N-]2 ionic liquid
Gan Ren(任淦). Chin. Phys. B, 2021, 30(1): 016105.
[7] Effects of water on the structure and transport properties of room temperature ionic liquids and concentrated electrolyte solutions
Jinbing Zhang(张晋兵), Qiang Wang(王强), Zexian Cao(曹则贤). Chin. Phys. B, 2020, 29(8): 087804.
[8] Ionic liquid gating control of planar Hall effect in Ni80Fe20/HfO2 heterostructures
Yang-Ping Wang(汪样平), Fu-Fu Liu(刘福福), Cai Zhou(周偲), Chang-Jun Jiang(蒋长军). Chin. Phys. B, 2020, 29(7): 077507.
[9] Significant role of nanoscale Bi-rich phase in optimizing thermoelectric performance of Mg3Sb2
Yang Wang(王杨), Xin Zhang(张忻), Yan-Qin Liu(刘燕琴), Jiu-Xing Zhang(张久兴), Ming Yue(岳明). Chin. Phys. B, 2020, 29(6): 067201.
[10] Refractive index of ionic liquids under electric field: Methyl propyl imidazole iodide and several derivatives
Ji Zhou(周吉), Shi-Kui Dong(董士奎), Zhi-Hong He(贺志宏), Yan-Hu Zhang(张彦虎). Chin. Phys. B, 2020, 29(4): 047801.
[11] Covalent coupling of DNA bases with graphene nanoribbon electrodes: Negative differential resistance, rectifying, and thermoelectric performance
Peng-Peng Zhang(张鹏鹏), Shi-Hua Tan(谭仕华)†, Xiao-Fang Peng(彭小芳)‡, and Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2020, 29(10): 106801.
[12] Light absorption coefficients of ionic liquids under electric field
Ji Zhou(周吉), Shi-Kui Dong(董士奎), Zhi-Hong He(贺志宏), Ju-Lius Caesar Puoza, Yan-Hu Zhang(张彦虎). Chin. Phys. B, 2019, 28(1): 017801.
[13] Finite element analysis of ionic liquid gel soft actuator
Bin He(何斌), Cheng-Hong Zhang(张成红), An Ding(丁安). Chin. Phys. B, 2017, 26(12): 126102.
[14] In-situ characterization of electrochromism based on ITO/PEDOT:PSS towards preparation of high performance device
Xue-Jin Wang(王学进), Zheng-Fei Guo(郭正飞), Jing-Yu Qu(曲婧毓),Kun Pan(潘坤), Zheng Qi(祁铮), Hong Li(李泓). Chin. Phys. B, 2016, 25(2): 028201.
[15] Improving the performance of perovskite solar cells with glycerol-doped PEDOT:PSS buffer layer
Jian-Feng Li(李建丰), Chuang Zhao(赵创), Heng Zhang(张恒), Jun-Feng Tong(同军锋), Peng Zhang(张鹏), Chun-Yan Yang(杨春燕), Yang-Jun Xia(夏养君), Duo-Wang Fan(范多旺). Chin. Phys. B, 2016, 25(2): 028402.
No Suggested Reading articles found!