Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 097503    DOI: 10.1088/1674-1056/24/9/097503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Shape-manipulated spin-wave eigenmodes of magnetic nanoelements

Zhang Guang-Fu (张光富)a b, Li Zhi-Xiong (李志雄)a, Wang Xi-Guang (王希光)a, Nie Yao-Zhuang (聂耀庄)a, Guo Guang-Hua (郭光华)a
a School of Physics and Electronics, Central South University, Changsha 410083, China;
b School of Communication and Electronic Engineering, Hunan City University, Yiyang 413000, China
Abstract  The magnetization dynamics of nanoelements with tapered ends have been studied by micromagnetic simulations. Several spin-wave modes and their evolutions with the sharpness of the element ends are characterized. The edge mode localized in the two ends of the element can be effectively tuned by the element shape. Its frequency increases rapidly with the tapered parameter h and its localized area gradually expands toward the element center, and it finally merges into the fundamental mode at a critical tapered parameter h0. For nanoelements with h > h0, the edge mode is completely suppressed. The standing spin-wave modes mainly in the internal area of the element are less affected by the element shape. The shifts of their frequencies are small and they display different tendencies. The evolution of the spin-wave modes with the element shape is explained by considering the change of the internal field.
Keywords:  ferromagnetic resonance      spin-wave mode      micromagnetic simulation      magnetic nanoelement  
Received:  25 January 2015      Revised:  30 March 2015      Accepted manuscript online: 
PACS:  75.40.Gb (Dynamic properties?)  
  75.40.Mg (Numerical simulation studies)  
  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
  75.75.-c (Magnetic properties of nanostructures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11374373), the Doctoral Fund of Ministry of Education of China (Grant No. 20120162110020), the Natural Science Foundation of Hunan Province of China (Grant No. 13JJ2004), and the Science and Technology Planning of Yiyang City of Hunan Province of China (Grant No. 2014JZ54).
Corresponding Authors:  Guo Guang-Hua     E-mail:  guogh@mail.csu.edu.cn

Cite this article: 

Zhang Guang-Fu (张光富), Li Zhi-Xiong (李志雄), Wang Xi-Guang (王希光), Nie Yao-Zhuang (聂耀庄), Guo Guang-Hua (郭光华) Shape-manipulated spin-wave eigenmodes of magnetic nanoelements 2015 Chin. Phys. B 24 097503

[1] Lavrijsen R, Lee J H, Pacheco A F, Petit D C M C, Mansell R and Cowburn R P 2013 Nature 493 647
[2] Chappert C, Fert A and van Dau F N 2007 Nat. Mater. 6 813
[3] Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F and Ohno H 2010 Nat. Mater. 9 721
[4] Wang K L, Alzate J G and Amiri P K 2013 J. Phys. D 46 074003
[5] Lee S, Kim H, Yun D J, Rhee S W and Yong K J 2009 Appl. Phys. Lett. 95 262113
[6] Joo S J, Kim T, Shin S H, Lim J Y, Hong J, Song J D, Chang J, Lee H W, Rhie K, Han S H, Shin K H and Johnson M 2013 Nature 494 72
[7] Rückriem R, Krone P, Schrefl T and Albrecht M 2012 Appl. Phys. Lett. 100 242402
[8] Wang X G, Guo G H, Li Z X, Wang D W, Nie Y Z and Tang W 2015 Eur. Phys. Lett. 109 37008
[9] Wang X G, Guo G H, Nie Y Z, Wang D W, Zeng Z M, Li Z X and Tang W 2014 Phys. Rev. B 89 144418
[10] Wang X G, Guo G H, Nie Y Z, Wang D W, Zeng Z M, Li Z X and Tang W 2014 J. Appl. Phys. 116 023904
[11] Lin C S, Lim H S, Wang C C, Adeyeye A O, Wang Z K, Ng S C and Kuok M H 2010 J. Appl. Phys. 108 114305
[12] Giovannini L, Montoncello F, Zivieri R and Nizzoli F 2007 J. Phys.: Condens. Matter. 19 225008
[13] Lü D L and Xu C 2010 Chin. Phys. Lett. 27 097503
[14] Zhou H M, Chen Q and Deng J H 2014 Chin. Phys. B 23 047502
[15] Bayer C, Jorzick J, Hillebrands B, Demokritov S O, Kouba R, Bozinoski R, Slavin A N, Guslienko K Y, Berkov D V, Gorn N L and Kostylev M P 2005 Phys. Rev. B 72 064427
[16] Gubbiotti G, Carlotti G, Okuno T, Grimsditch M, Giovannini L, Montoncello F and Nizzoli F 2005 Phys. Rev. B 72 184419
[17] Rückriem R, Schref T and Albrecht M 2014 Appl. Phys. Lett. 104 052414
[18] Sproll M, Noske M, Bauer H, Kammerer M, Gangwar A, Dieterle G, Weigand M, Stoll H, Woltersdorf G, Back C H and Schütz G 2014 Appl. Phys. Lett. 104 012409
[19] Barros N, Rassam H and Kachkachi H 2013 Phys. Rev. B 88 014421
[20] Zhang G F, Li Z X, Wang X G, Nie Y Z and Guo G H 2015 J. Magn. Magn. Mater. 385 402
[21] Montoncello F, Giovannini L, Nizzoli F, Vavassori P and Grimsditch M 2008 Phys. Rev. B 77 214402
[22] Zheng Y and Zhu J G 1997 J. Appl. Phys. 81 5471
[23] Zhang W L, Tang R J, Jiang H C, Zhang W X, Peng B and Zhang H W 2005 IEEE Trans. Magn. 41 4390
[24] Han X F, Grimsditch M, Meersschaut J, Hoffmann A, Ji Y, Sort J, Nogués J, Divan R, Pearson J E and Keavney D J 2007 Phys. Rev. Lett. 98 147202
[25] Van Waeyenberge B, Puzic A, Stoll H, Chou K W, Tyliszczak T, Hertel R, Fahnle M, Bruck H, Rott K, Reiss G, Neudecker I, Weiss D, Back C H and Schutz G 2006 Nature 444 461
[26] Kammerer M, Weigand M, Curcic M, Noske M, Sproll M, Vansteenkiste A, Van Waeyenberge B, Stoll H, Woltersdorf G, Back C H and Schuetz G 2011 Nat. Commun. 2 279
[27] Garanin D A and Kachkachi H 2009 Phys. Rev. B 80 014420
[28] Seki T, Utsumiya K, Nozaki Y, Imamura H and Takanashi K 2013 Nat. Commun. 4 1726
[29] Donahue M J and Porter D G 2013 Object Oriented MicroMagnetic Framework Project at ITL/NIST
[30] Herring C and Kittel C 1951 Phys. Rev. 81 869
[31] Nembach H T, Shaw J M, Silva T J, Johnson W L, Kim S A, McMichael R D and Kabos P 2011 Phys. Rev. B 83 094427
[32] Nembach H T, Shaw J M, Boone C T and Silva T J 2013 Phys. Rev. Lett. 110 117201
[33] Kim S K 2010 J. Phys. D: Appl. Phys. 43 264004
[34] Gubbiotti G, Conti M, Carlotti G, Candeloro P, Fabrizio E D, Guslienko K Y, Andre A, Bayer C and Slavin A N 2004 J. Phys.: Condens. Matter. 16 7709
[35] Jorzick J, Demokritov S O, Hillebrands B, Bailleul M, Fermon C, Guslienko K Y, Slavin A N, Berkov D V and Gorn N L 2002 Phys. Rev. Lett. 88 047204
[36] Neusser S, Botters B and Grundler D 2008 Phys. Rev. B 78 054406
[37] Guslienko K Y, Chantrell R W and Slavin A N 2003 Phys. Rev. B 68 024422
[38] Guslienko K Y and Slavin A N 2005 Phys. Rev. B 72 014463
[1] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[2] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[3] Influence of Dzyaloshinskii-Moriya interaction on the magnetic vortex reversal in an off-centered nanocontact geometry
Hua-Nan Li(李化南), Tong-Xin Xue(薛彤鑫), Lei Chen(陈磊), Ying-Rui Sui(隋瑛瑞), and Mao-Bin Wei(魏茂彬). Chin. Phys. B, 2022, 31(9): 097501.
[4] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[5] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[6] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[7] Gilbert damping in the layered antiferromagnet CrCl3
Xinlin Mi(米锌林), Ledong Wang(王乐栋), Qi Zhang(张琪), Yitong Sun(孙艺彤), Yufeng Tian(田玉峰), Shishen Yan(颜世申), and Lihui Bai(柏利慧). Chin. Phys. B, 2022, 31(2): 027505.
[8] Terahertz magnetic resonance in MnCr2O4 under high magnetic field
Peng Zhang(张朋), Kaibo He(贺凯博), Zheng Wang(王铮), Shile Zhang(张仕乐), Jianming Dai(戴建明), and Fuhai Su(苏付海). Chin. Phys. B, 2022, 31(10): 107502.
[9] Theoretical investigation of ferromagnetic resonance in a ferromagnetic thin film with external stress anisotropy
Jieyu Zhou(周婕妤), Jianhong Rong(荣建红), Huan Wang(王焕), Guohong Yun(云国宏), Yanan Wang(王娅男), and Shufei Zhang(张舒飞). Chin. Phys. B, 2022, 31(1): 017601.
[10] Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2
Lijun Ni(倪丽君), Zhendong Chen(陈振东), Wei Li(李威), Xianyang Lu(陆显扬), Yu Yan(严羽), Longlong Zhang(张龙龙), Chunjie Yan(晏春杰), Yang Chen(陈阳), Yaoyu Gu(顾耀玉), Yao Li(黎遥), Rong Zhang(张荣), Ya Zhai(翟亚), Ronghua Liu(刘荣华), Yi Yang(杨燚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2021, 30(9): 097501.
[11] Enhanced spin-orbit torque efficiency in Pt100-xNix alloy based magnetic bilayer
Congli He(何聪丽), Qingqiang Chen(陈庆强), Shipeng Shen(申世鹏), Jinwu Wei(魏晋武), Hongjun Xu(许洪军), Yunchi Zhao(赵云驰), Guoqiang Yu(于国强), and Shouguo Wang(王守国). Chin. Phys. B, 2021, 30(3): 037503.
[12] Effect of interface magnetization depinning on the frequency shift of ferromagnetic and spin wave resonance in YIG/GGG films
Fanqing Lin(林凡庆), Shouheng Zhang(张守珩), Guoxia Zhao(赵国霞), Hongfei Li(李洪飞), Weihua Zong(宗卫华), Shandong Li(李山东). Chin. Phys. B, 2020, 29(6): 067601.
[13] Improvement of high-frequency properties of Co2FeSi Heusler films by ultrathin Ru underlayer
Cuiling Wang(王翠玲), Shouheng Zhang(张守珩), Shandong Li(李山东), Honglei Du(杜洪磊), Guoxia Zhao(赵国霞), Derang Cao(曹德让). Chin. Phys. B, 2020, 29(4): 046202.
[14] Giant anisotropy of magnetic damping and significant in-plane uniaxial magnetic anisotropy in amorphous Co40Fe40B20 films on GaAs(001)
Ji Wang(王佶), Hong-Qing Tu(涂宏庆), Jian Liang(梁健), Ya Zhai(翟亚), Ruo-Bai Liu(刘若柏), Yuan Yuan(袁源), Lin-Ao Huang(黄林傲), Tian-Yu Liu(刘天宇), Bo Liu(刘波)†, Hao Meng(孟皓), Biao You(游彪), Wei Zhang(张维), Yong-Bing Xu(徐永兵), and Jun Du(杜军)‡. Chin. Phys. B, 2020, 29(10): 107503.
[15] Discrete modulational instability and bright localized spin wave modes in easy-axis weak ferromagnetic spin chains involving the next-nearest-neighbor coupling
Jiayu Xie(谢家玉), Zhihao Deng(邓志豪), Xia Chang(昌霞), Bing Tang(唐炳). Chin. Phys. B, 2019, 28(7): 077501.
No Suggested Reading articles found!