Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 017502    DOI: 10.1088/1674-1056/ac21bb
RAPID COMMUNICATION Prev   Next  

Probing the magnetization switching with in-plane magnetic anisotropy through field-modified magnetoresistance measurement

Runrun Hao(郝润润)1,2,†, Kun Zhang(张昆)1,2,†, Yinggang Li(李迎港)1,2, Qiang Cao(曹强)3, Xueying Zhang(张学莹)1,2,4,‡, Dapeng Zhu(朱大鹏)1,2,§, and Weisheng Zhao(赵巍胜)1,2
1 Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China;
2 Beihang-Goertek Joint Microelectronics Institute, Qingdao Research Institute, Beihang University, Qingdao 266000, China;
3 Spintronics Institute, University of Jinan, Jinan 250022, China;
4 Truth Instruments Co. Ltd., Qingdao 266000, Chin
Abstract  Effective probing current-induced magnetization switching is highly required in the study of emerging spin-orbit torque (SOT) effect. However, the measurement of in-plane magnetization switching typically relies on the giant/tunneling magnetoresistance measurement in a spin valve structure calling for complicated fabrication process, or the non-electric approach of Kerr imaging technique. Here, we present a reliable and convenient method to electrically probe the SOT-induced in-plane magnetization switching in a simple Hall bar device through analyzing the MR signal modified by a magnetic field. In this case, the symmetry of MR is broken, resulting in a resistance difference for opposite magnetization orientations. Moreover, the feasibility of our method is widely evidenced in heavy metal/ferromagnet (Pt/Ni20Fe80 and W/Co20Fe60B20) and the topological insulator/ferromagnet (Bi2Se3/Ni20Fe80). Our work simplifies the characterization process of the in-plane magnetization switching, which can promote the development of SOT-based devices.
Keywords:  magnetoresistance      in-plane magnetization switching      electrical detection  
Received:  11 July 2021      Revised:  23 August 2021      Accepted manuscript online:  27 August 2021
PACS:  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11904017, 11974145, 51901008, and 12004024), Shandong Provincial Natural Science Foundation, China (Grant No. ZR2020ZD28), platform from Qingdao Science and Technology Commission, and the Fundamental Research Funds for the Central Universities of China.
Corresponding Authors:  Xueying Zhang, Dapeng Zhu     E-mail:  xueying.zhang@buaa.edu.cn;zhudp@buaa.edu.cn

Cite this article: 

Runrun Hao(郝润润), Kun Zhang(张昆), Yinggang Li(李迎港), Qiang Cao(曹强), Xueying Zhang(张学莹), Dapeng Zhu(朱大鹏), and Weisheng Zhao(赵巍胜) Probing the magnetization switching with in-plane magnetic anisotropy through field-modified magnetoresistance measurement 2022 Chin. Phys. B 31 017502

[1] Slaughter J M, Rizzo N D, Janesky J, Whig R, Mancoff F B, Houssameddine D, Sun J J, Aggarwal S, Nagel K, Deshpande S, Alam S M, Andre T and LoPresti P in 2012 IEEE Int. electron devices meeting 29.23.21
[2] Fukami S, Yamanouchi M, Ikeda S and Ohno H 2014 IEEE Transactions on Magnetics 50 1
[3] Lin X, Yang W, Wang K L and Zhao W 2019 Nat. Electron. 2 274
[4] Liu L, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science 336 4
[5] Liu L, Lee O J, Gudmundsen T J, Ralph D C and Buhrman R A 2012 Phys. Rev. Lett. 109 096602
[6] Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Nature 476 189
[7] Pai C, Liu L, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Appl. Phys. Lett. 101 122404
[8] Wang M, Cai W, Zhu D, Wang Z, Kan J, Zhao Z, Cao K, Wang Z, Zhang Y, Zhang T, Park C, Wang J, Fert A and Zhao W 2018 Nat. Electron. 1 582
[9] Wang M, Cai W, Cao K, Zhou J, Wrona J, Peng S, Yang H, Wei J, Kang W, Zhang Y, Langer J, Ocker B, Fert A and Zhao W 2018 Nat. Commun. 9 671
[10] Peng S, Zhu D, Li W, Wu H, Grutter A J, Gilbert D A, Lu J, Xiong D, Cai W, Shafer P, Wang K L and Zhao W 2020 Nat. Electron. 3 757
[11] Liu N, Wang H and Zhu T 2012 Acta Phys. Sin. 61 167504 (in Chinese)
[12] Avci C O, Garello K, Gabureac M, Ghosh A, Fuhrer A, Alvarado S F and Gambardella P 2014 Phys. Rev. B 90 224427
[13] Garello K, Miron I M, Avci C O, Freimuth F, Mokrousov Y, Blugel S, Auffret S, Boulle O, Gaudin G and Gambardella P 2013 Nat. Nanotech. 8 587
[14] HayashI M, Kim J, Yamanouchi M and Ohno H 2014 Phys. Rev. B 89 144425
[15] Liu L, Moriyama T, Ralph D C and Buhrman R A 2011 Phys. Rev. Lett. 106 036601
[16] Woo S, Mann M, Tan A J, Caretta L and Beach G S D 2014 Appl. Phys. Lett. 105 212404
[17] Yang H, Zhang B, Zhang X, Yan X, Cai W, Zhao Y, Sun J, Wang K L, Zhu D and Zhao W 2019 Phys. Rev. Appl. 12 034004
[18] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539
[19] Fukami S, Anekawa T, Zhang C and Ohno H 2016 Nat. Nanotechnol. 11 621
[20] Li Y, Kan H, Miao Y, Yang L, Qiu S, Zhang G, Ren J, Wang C and Hu G 2020 Chin. Phys. B 29 017303
[21] Shi S, Liang S, Zhu Z, Cai K, Pollard S D, Wang Y, Wang J, Wang Q, He P, Yu J, Eda G, Liang G and Yang H 2019 Nat. Nanotech. 14 945
[22] Wang Y, Zhu D, Wu Y, Yang Y, Yu J, Ramaswamy R, Mishra R, Shi S, Elyasi M, Teo K L, Wu Y and Yang H 2017 Nat. Commun. 8 1364
[23] Chen Y T, TakahashI S, Nakayama H, Althammer M, Goennenwein S T B, Saitoh E and Bauer G E W 2013 Phys. Rev. B 87 144411
[24] Liu Y, Chen T, Lo T, Tsai T, Yang S, Chang Y, Wei J and Pai C 2020 Phys. Rev. Appl. 13 044032
[25] Fan X, Wu J, Chen Y, Jerry M J, Zhang H and Xiao J Q 2013 Nat. Commun. 4 1799
[26] Manchon A, Koo H C, Nitta J, Frolov S M and Duine R A 2015 Nat. Mater. 14 871
[27] Ou Y, Pai C, Shi S, Ralph D C and Buhrman R A 2016 Phys. Rev. B 94 140414
[28] Jiang M, Asahara H, Sato S, Ohya S and Tanaka M 2020 Nat. Electron. 3 751
[29] Khvalkovskiy A V, Cros V, Apalkov D, Nikitin V, Krounbi M, Zvezdin K A, Anane A, Grollier J and Fert A 2013 Phys. Rev. B 87 020402
[30] Pai C, Ou Y, Vilela-Leão L H, Ralph D C and Buhrman R A 2015 Phys. Rev. B 92 064426
[31] Katine J A, Albert F J, Buhrman R A, Myers E B and Ralph D C 2000 Phys. Rev. Lett. 84 14
[32] Sun J Z 2000 Phys. Rev. B 62 570
[33] Koch R H, Katine J A and Sun J Z 2004 Phys. Rev. Lett. 92 088302
[34] Nan T, Emori S, Boone C T, Wang X, Oxholm T M, Jones J G, Howe B M, Brown G J and Sun N X 2015 Phys. Rev. B 91 214416
[35] Mazraati H, Zahedinejad M and Åkerman J 2018 Appl. Phys. Lett. 113 092401
[36] Cho S, Baek S C, Lee K D, Jo Y and Park B G 2015 Sci. Rep. 5 14668
[37] Mcguire T R and Potter R I 1975 IEEE T. Magn. 11 1018
[38] Teixeira J M, Silva R F A, Ventura J, Pereira A M, Carpinteiro F, Araújo J P, Sousa J B, Cardoso S, Ferreira R and Freitas P P 2006 Mater. Sci. Eng. B 126 180
[39] Zhu S, Shi G, Zhao P, Meng D, Liang G, Zhai X, Lu Y, Li Y, Chen L and Wu K 2018 Chin. Phys. B 27 076801
[1] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[2] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[3] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[4] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[5] Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors
Shan-Shan Chen(陈珊珊), Yang Yang(杨阳), and Fan Yang(杨帆). Chin. Phys. B, 2022, 31(8): 087303.
[6] Spin transport in epitaxial Fe3O4/GaAs lateral structured devices
Zhaocong Huang(黄兆聪), Wenqing Liu(刘文卿), Jian Liang(梁健), Qingjie Guo(郭庆杰), Ya Zhai(翟亚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(6): 068505.
[7] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[8] Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions
Pei-Sen Li(李裴森), Jun-Ping Peng(彭俊平), Yue-Guo Hu(胡悦国), Yan-Rui Guo(郭颜瑞), Wei-Cheng Qiu(邱伟成), Rui-Nan Wu(吴瑞楠), Meng-Chun Pan(潘孟春), Jia-Fei Hu(胡佳飞), Di-Xiang Chen(陈棣湘), and Qi Zhang(张琦). Chin. Phys. B, 2022, 31(3): 038502.
[9] Large positive magnetoresistance in photocarrier-doped potassium tantalites
Rui-Shu Yang(杨睿姝), Ding-Bang Wang(王定邦), Yang Zhao(赵阳), Shuan-Hu Wang(王拴虎), and Ke-Xin Jin(金克新). Chin. Phys. B, 2022, 31(12): 127302.
[10] Sign reversal of anisotropic magnetoresistance and anomalous thickness-dependent resistivity in Sr2CrWO6/SrTiO3 films
Chunli Yao(姚春丽), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Zitao Zhang(张子涛), Weimin Jiang(姜伟民), Qiang Zhao(赵强), Yujie Qiao(乔宇杰), Meihui Chen(陈美慧), Xingyu Chen(陈星宇), Ruifen Dou(窦瑞芬), Changmin Xiong(熊昌民), and Jiacai Nie(聂家财). Chin. Phys. B, 2022, 31(10): 107302.
[11] Observation of quadratic magnetoresistance in twisted double bilayer graphene
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yiru Ji(季怡汝), Jinpeng Tian(田金朋), Fanfan Wu(吴帆帆), Jian Tang(汤建), Yalong Yuan(袁亚龙), Yanchong Zhao(赵岩翀), Xiaozhou Zan(昝晓州), Rong Yang(杨蓉), Kenji Watanabe, Takashi Taniguchi, Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(10): 107201.
[12] Negative tunnel magnetoresistance in a quantum dot induced by interplay of a Majorana fermion and thermal-driven ferromagnetic leads
Peng-Bin Niu(牛鹏斌), Bo-Xiang Cui(崔博翔), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(9): 097401.
[13] Current-dependent positive magnetoresistance inLa0.8Ba0.2MnO3 ultrathin films
Guankai Lin(林冠凯), Haoru Wang(王昊儒), Xuhui Cai(蔡旭晖), Wei Tong(童伟), and Hong Zhu(朱弘). Chin. Phys. B, 2021, 30(9): 097502.
[14] High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4
Xu-Chuan Wu(吴徐传), Shen Xu(徐升), Jian-Feng Zhang(张建丰), Huan Ma(马欢), Kai Liu(刘凯), Tian-Long Xia(夏天龙), and Shan-Cai Wang(王善才). Chin. Phys. B, 2021, 30(9): 097303.
[15] Magneto-transport properties of thin flakes of Weyl semiconductor tellurium
Nan Zhang(张南), Bin Cheng(程斌), Hui Li(李惠), Lin Li(李林), and Chang-Gan Zeng(曾长淦). Chin. Phys. B, 2021, 30(8): 087304.
No Suggested Reading articles found!