INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions |
Pei-Sen Li(李裴森), Jun-Ping Peng(彭俊平), Yue-Guo Hu(胡悦国)†, Yan-Rui Guo(郭颜瑞), Wei-Cheng Qiu(邱伟成), Rui-Nan Wu(吴瑞楠), Meng-Chun Pan(潘孟春), Jia-Fei Hu(胡佳飞), Di-Xiang Chen(陈棣湘), and Qi Zhang(张琦) |
College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China |
|
|
Abstract For convenient and efficient verification of the magnetoresistance effect in graphene spintronic devices, vertical magnetic junctions with monolayer graphene sandwiched between two NiFe electrodes are fabricated by a relatively simple way of transferring CVD graphene onto the bottom ferromagnetic stripes. The anisotropic magnetoresistance contribution is excluded by the experimental result of magnetoresistance (MR) ratio dependence on the magnetic field direction. The spin-dependent transport measurement reveals two distinct resistance states switching under an in-plane sweeping magnetic field. A magnetoresistance ratio of about 0.17 % is obtained at room temperature and it shows a typical monotonic downward trend with the bias current increasing. This bias dependence of MR further verifies that the spin transport signal in our device is not from the anisotropic magnetoresistance. Meanwhile, the I—V curve is found to manifest a linear behavior, which demonstrates the Ohmic contacts at the interface and the metallic transport characteristic of vertical graphene junction.
|
Received: 13 June 2021
Revised: 20 July 2021
Accepted manuscript online: 30 July 2021
|
PACS:
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
85.75.Ss
|
(Magnetic field sensors using spin polarized transport)
|
|
81.05.ue
|
(Graphene)
|
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62004223) and the Open Research Fund Program of the State Key Laboratory of LowDimensional Quantum Physics, China (Grant No. KF202012). |
Corresponding Authors:
Yue-Guo Hu
E-mail: huyueguo1991@163.com
|
Cite this article:
Pei-Sen Li(李裴森), Jun-Ping Peng(彭俊平), Yue-Guo Hu(胡悦国), Yan-Rui Guo(郭颜瑞), Wei-Cheng Qiu(邱伟成), Rui-Nan Wu(吴瑞楠), Meng-Chun Pan(潘孟春), Jia-Fei Hu(胡佳飞), Di-Xiang Chen(陈棣湘), and Qi Zhang(张琦) Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions 2022 Chin. Phys. B 31 038502
|
[1] Dieny B, Prejbeanu I L, Garello K, et al. 2020 Nat. Electron. 3 446 [2] Zheng C, Zhu K, Cardoso De Freitas S, et al. 2019 IEEE Trans. Magn. 55 1 [3] Freitas P P, Ferreira R and Cardoso S 2016 Proc. IEEE 104 1894 [4] Apalkov D, Dieny B and Slaughter J M 2016 Proc. IEEE 104 1796 [5] Zahedinejad M, Awad A A, Muralidhar S, Khymyn R, Fulara H, Mazraati H, Dvornik M and Åkerman J 2020 Nat. Nanotechnol. 15 47 [6] Dery H, Dalal P, Cywiński Ł and Sham L J 2007 Nature 447 573 [7] Hu J, Ji M, Qiu W, Pan L, Li P, Peng J, Hu Y, Liu H and Pan M 2019 Sensors (Basel) 19 4475 [8] Parkin S S, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M and Yang S H 2004 Nat. Mater. 3 862 [9] Yuasa S, Nagahama T, Fukushima A, Suzuki Y and Ando K 2004 Nat. Mater. 3 868 [10] Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F and Ohno H 2008 Appl. Phys. Lett. 93 082508 [11] Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature 490 192 [12] Avouris P, Chen Z and Perebeinos V 2007 Nat. Nanotechnol. 2 605 [13] Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611 [14] Geim A K 2009 Science 324 1530 [15] Han W, Kawakami R K, Gmitra M and Fabian J 2014 Nat. Nanotechnol. 9 794 [16] Tombros N, Jozsa C, Popinciuc M, Jonkman H T and van Wees B J 2007 Nature 448 571 [17] Han W, Pi K, McCreary K M, Li Y, Wong J J I, Swartz A G and Kawakami R K 2010 Phys. Rev. Lett. 105 167202 [18] Yang T Y, Balakrishnan J, Volmer F, Avsar A, Jaiswal M, Samm J, Ali S R, Pachoud A, Zeng M, Popinciuc M, Güntherodt G, Beschoten B and Özyilmaz B 2011 Phys. Rev. Lett. 107 047206 [19] Han W and Kawakami R K 2011 Phys. Rev. Lett. 107 047207 [20] Cobas E, Friedman A L, van'T Erve O M J, Robinson J T and Jonker B T 2012 Nano Lett. 12 3000 [21] Krishnan K S and Ganguli N 1939 Nature 144 667 [22] Karpan V M, Giovannetti G, Khomyakov P A, Talanana M, Starikov A A, Zwierzycki M, van den Brink J, Brocks G and Kelly P J 2007 Phys. Rev. Lett. 99 176602 [23] Karpan V M, Khomyakov P A, Starikov A A, Giovannetti G, Zwierzycki M, Talanana M, Brocks G, van den Brink J and Kelly P J 2008 Phys. Rev. B 78 195419 [24] Iqbal M Z, Iqbal M W, Lee J H, Kim Y S, Chun S and Eom J 2013 Nano Res. 6 373 [25] Iqbal M Z, Hussain G, Siddique S, Iqbal M W, Murtaza G and Ramay S M 2017 J. Magn. Magn. Mater. 422 322 [26] Park J and Lee H 2014 Phys. Rev. B 89 165417 [27] Li W, Xue L, Abruña H D and Ralph D C 2014 Phys. Rev. B 89 184418 [28] Asshoff P U, Sambricio J L, Rooney A P, Slizovskiy S, Mishchenko A, Rakowski A M, Hill E W, Geim A K, Haigh S J, Fal'ko V I, Vera-Marun I J and Grigorieva I V 2017 2D Mater. 4 031004 [29] Entani S, Naramoto H and Sakai S 2015 J. Appl. Phys. 117 17A334 [30] Iqbal M Z, Hussain G, Siddique S and Iqbal M W 2017 J. Magn. Magn. Mater. 429 330 [31] Li X, Cai W, Colombo L and Ruoff R S 2009 Nano Lett. 9 4268 [32] Mohiuddin T M G, Hill E, Elias D, Zhukov A, Novoselov K and Geim A 2008 IEEE Trans. Magn. 44 2624 [33] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401 [34] Ferrari A C and Basko D M 2013 Nat. Nanotechnol. 8 235 [35] Entani S, Seki T, Sakuraba Y, Yamamoto T, Takahashi S, Naramoto H, Takanashi K and Sakai S 2016 Appl. Phys. Lett. 109 082406 [36] Zhang S, Levy P M, Marley A C and Parkin S S P 1997 Phys. Rev. Lett. 79 3744 [37] Valenzuela S O, Monsma D J, Marcus C M, Narayanamurti V and Tinkham M 2005 Phys. Rev. Lett. 94 196601 [38] Saha K K, Blom A, Thygesen K S and Nikolić B 2012 Phys. Rev. B 85 184426 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|