|
|
Graphene-based heterojunction for enhanced photodetectors |
Haiting Yao(姚海婷)1, Xin Guo(郭鑫)1,†, Aida Bao(鲍爱达)1, Haiyang Mao(毛海央)2, Youchun Ma(马游春)1, and Xuechao Li(李学超)1 |
1 National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan 030051, China; 2 Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China |
|
|
Abstract Graphene has high light transmittance of 97.7% and ultrafast carrier mobility, which means it has attracted widespread attention in two-dimensional materials. However, the optical absorptivity of single-layer graphene is only 2.3%, and the corresponding photoresponsivity is difficult to produce at normal light irradiation. And the low on—off ratio resulting from the zero bandgap makes it unsuitable for many electronic devices, hindering potential development. The graphene-based heterojunction composed of graphene and other materials has outstanding optical and electrical properties, which can mutually modify the defects of both the graphene and material making it then suitable for optoelectronic devices. In this review, the advantages of graphene-based heterojunctions in the enhancement of the performance of photodetectors are reviewed. Firstly, we focus on the photocurrent generation mechanism of a graphene-based heterojunction photodetector, especially photovoltaic, photoconduction and photogating effects. Secondly, the classification of graphene-based heterojunctions in different directions is summarized. Meanwhile, the latest research progress of graphene-transition metal dichalcogenide (TMD) heterojunction photodetectors with excellent performance in graphene-based heterostructures is introduced. Finally, the difficulties faced by the existing technologies of graphene-based photodetectors are discussed, and further prospects are proposed.
|
Received: 16 June 2021
Revised: 26 July 2021
Accepted manuscript online: 07 August 2021
|
PACS:
|
85.60.Bt
|
(Optoelectronic device characterization, design, and modeling)
|
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
73.40.Lq
|
(Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
74.25.Gz
|
(Optical properties)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61771467), Shanxi Scholarship Council of China (Grant No. 2020-112), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi, China (Grant Nos. 2020L0268 and 2020L0307), and Science Foundation of North University of China (Grant No. XJJ201915). |
Corresponding Authors:
Xin Guo
E-mail: guoxin2019@nuc.edu.cn
|
Cite this article:
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超) Graphene-based heterojunction for enhanced photodetectors 2022 Chin. Phys. B 31 038501
|
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [2] Stoller M D, Park S, Zhu Y, An J and Ruoff R S 2008 Nano Lett. 8 3498 [3] Chen Y, Wang Y and Wang Z, et al. 2021 Nat. Electron. 4 357 [4] Miao J, Hu W, Guo N, Lu Z, Liu X, Liao L, Chen P, Jiang T, Wu S, Ho J C., Wang L, Chen X and Lu W 2015 Small 11 936 [5] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Pyhs. 81 109 [6] Sun Z, Liu Z, Li J, Tai G, Lau S and Yan F 2012 Adv. Mater. 24 5878 [7] Sun Z and Chang H 2014 ACS Nano 8 4133 [8] Xie C, Mak C, Tao X and Yan F 2016 Adv. Funct. Mater. 27 1603886 [9] Shin D H and Choi S H 2018 Micromachines 9 350 [10] Xia F, Mueller T, Lin Y, Valdes-Garcia A and Avouris P 2009 Nat. Nanotech. 4 839 [11] Bao W, Jing L, Velasco Jr J, Lee Y, Liu G, Tran D, Standley B, Aykol M, Cronin S B, Smirnov D, Koshino M, McCann E and Bockrath M 2011 Nat. Phys. 7 948 [12] Shimatani M, Fukushima S, Okuda S and Ogawa S 2020 Appl. Phys. Lett. 117 173102 [13] Zhao M, Xue Z, Zhu W, Wang G, Tang S, Liu Z, Guo Q, Chen D, Ding G and Di Z 2020 ACS Appl. Mater. Inter. 12 15606 [14] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotech. 5 722 [15] Li X, Shen R, Ma S, Chen X and Xie J 2018 Appl. Surf. Sci. 430 53 [16] Liu S, Yu J and Jaroniec M 2010 J. Am. Chem. Soc. 132 11914 [17] Lin S, Lu Y, Xu J, Feng S and Li J 2017 Nano Energy 40 122 [18] Lee C H, Lee G H, van der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J and Kim P 2014 Nat. Nanotech. 9 676 [19] Geim A K and Grigorieva I V 2013 Nature 499 419 [20] Dean C, Young A F, Wang L, Meric I, Lee G H, Watanabe K, Taniguchi T, Shepard K, Kim P and Hone J 2012 Solid State Commun. 152 1275 [21] Shim J, Kang D H, Kim Y, Kum H, Kong W, Bae S H, Almansouri I, Lee K, Park J H and Kim J 2018 Carbon 133 78 [22] Gong C, Zhang H, Wang W, Colombo L, Wallace R M and Cho K 2013 Appl. Phys. Lett. 103 053513 [23] Komsa H P and Krasheninnikov A V 2013 Phys. Rev. B 88 085318 [24] Hong X, Kim J, Shi S F, Zhang Y, Jin C, Sun Y, Tongay S, Wu J, Zhang Y and Wang F 2014 Nat. Nanotech. 9 682 [25] Liang J, Lei J, Wang Y, Ding Y, Shen Y and Deng X 2020 Chin. Phys. B 29 087805 [26] Zhang Y, Zhang X, Deng C, Ge Q, Huang J, Lu J, Lin G, Weng Z, Zhang X and Cai W 2020 Chin. Phys. B 29 067403 [27] Guo S, Wang Z, Wang H, Meng F, Wang P, Chen S, Zeng Y, Zhao J, Hu H, Cao R, Xu Z, Guo Z and Zhang H 2021 Adv. Mater. Interfaces 8 2001730 [28] Xu J, Song Y J, Park J H and Lee S 2018 Solid State Electron. 144 86 [29] Roy K, Padmanabhan M, Goswami S, Sai T P, Ramalingam G, Raghavan S and Ghosh A 2013 Nat. Nanotech. 8 826 [30] Yang J, Tang L, Luo W, Feng S, Leng C, Shi H and Wei X 2021 ACS Appl. Mater. Inter. 13 4692 [31] Zhu W, Xue Z, Wang G, Zhao M, Chen D, Guo Q, Liu Z, Feng X, Ding G, Chu P K and Di Z 2020 ACS Appl. Nano Mater. 3 6915 [32] Yue H, Hu A, Liu Q, Tian H, Hu C, Ren X, Chen N, Chen G, Jin K and Guo X 2021 Chin. Phys. B 30 038502 [33] Gao J, Li Y, Hu Y, Wang Z, Hu A and Guo X 2020 Chin. Phys. B 29 128502 [34] Ni Z, Ma L, Du S, Xu Y, Yuan M, Fang H, Wang Z, Xu M, Li D, Yang J, Hu W, Pi X and Yang D 2017 ACS Nano 11 9854 [35] Geng H, Yuan D, Yang Z, Tang Z, Zhang X, Yang K and Su Y 2019 J. Mater. Chem. C 7 11056 [36] Wu J, Yang Z, Qiu C, Zhang Y, Wu Z, Yang J, Lu Y, Li J, Yang D, Hao R, Li E, Yu G and Lin S 2018 Nanoscale 10 8023 [37] Lu Y, Feng S, Wu Z, Gao Y, Yang J, Zhang Y, Hao Z, Li J, Li E, Chen H and Lin S 2018 Nano Energy 47 140 [38] Luo L B, Hu H, Wang X H, Lu R, Zou Y F, Yu Y Q and Liang F X 2015 J. Mater. Chem. C 3 4723 [39] Luo L B, Chen J J, Wang M Z, Hu H, Wu C Y, Li Q, Wang L, Huang J A and Liang F X 2014 Adv. Funct. Mater. 24 2794 [40] Yu W, Li S, Zhang Y, Ma W, Sun T, Yuan J, Fu K and Bao Q 2017 Small 13 1700268 [41] Li A, Chen Q, Wang P, Gan Y, Qi T, Wang P, Tang F, Wu J Z, Chen R, Zhang L and Gong Y 2019 Adv. Mater. 31 1805656 [42] Kuiri M, Chakraborty B, Paul A, Das S, Sood A K and Das A 2016 App. Phys. Lett. 108 063506 [43] Vabbina P, Choudhary N, Chowdhury A A, Sinha R, Karabiyik M, Das S, Choi W and Pala N 2015 ACS Appl. Mater. Interfaces 7 15206 [44] Long M, Liu E and Wang P, et al. 2016 Nano Lett. 16 2254 [45] Kang B, Kim Y, Yoo W J and Lee C 2018 Small 14 1802593 [46] Kong W Y, Wu G A, Wang K Y, Zhang T F, Zou Y F, Wang D D and L B Luo 2016 Adv. Mater. 28 10725 [47] Lin R, Zheng W, Zhang D, Zhang Z, Liao Q, Yang L and Huang F 2018 ACS Appl. Mater. Interfaces 10 22419 [48] Ai M, Guo D, Qu Y, Cui W, Wu Z, Li P, Li L and Tang W 2017 J. Alloys Compd. 692 634 [49] Lu R, Liu J, Luo H, Chikan V and Wu J Z 2016 Sci. Rep. 6 19161 [50] Mudd G W, Svatek S A, Hague L, Makarovsky O, Kudrynskyi Z R, Mellor C J, Beton P H, Eaves L, Novoselov K S, Kovalyuk Z D, Vdovin E E, Marsden A J, Wilson N R and Patan'e A 2015 Adv. Mater. 27 3760 [51] Kim J, Park S, Jang H, et al. 2017 ACS Photon. 4 482 [52] Chen Z, Biscaras J and Shukla A 2015 Nanoscale 7 5981 [53] Yang F, Cong H, Yu K, Zhou L, Wang N, Liu Z, Li C, Wang Q and Cheng B 2017 ACS Appl. Mater. Inter. 9 13422 [54] Li X, Zhu M, Du M, Lv Z, Zhang L, Li Y, Yang Y, Yang T, Li X, Wang K, Zhu H and Fang Y 2016 Small 12 595 [55] Chen C, Feng Z, Feng Y, Yue Y, Qin C, Zhang D and Feng W 2016 ACS Appl. Mater. Interfaces 8 19004 [56] Chen X, Huang Z, Ren X, Xu G, Zhou J, Tao Y, Qi X and Zhong J 2018 ChemNanoMat 4 373 [57] Chang P H, Li C S, Fu F Y, Huang K Y, Chou A S and Wu C I 2018 Adv. Funct. Mater. 28 1800179 [58] Zhang J, Huang Y, Tan Z, Li T, Zhang Y, Jia K, Lin L, Sun L, Chen X, Li Z, Tan C, Zhang J, Zheng L, Wu Y, Deng B, Chen Z, Liu Z and Peng H 2018 Adv. Mater. 30 1803194 [59] Georgiou T, Jalil R, Belle B D, Britnell L, Gorbachev R V, Morozov S V, Kim Y, Gholinia A, Haigh S J, Makarovsky O, Eaves L, Ponomarenko L A, Geim A K, Novoselov K S and Mishchenko A 2013 Nat. Nanotech. 8 100 [60] Qiao H, Yuan J, Xu Z, Chen C, Lin S, Wang Y, Song J, Liu Y, Khan Q, Hoh H, Pan C, Li S and Bao Q 2015 ACS Nano 9 1886 [61] Dang W, Peng H, Li H, Wang P and Liu Z 2010 Nano Lett. 10 2870 [62] Utama M I B, Belarre F J, Magen C, Peng B, Arbiol J and Xiong Q 2012 Nano Lett. 12 2146 [63] AlAmri A M, Leung S, Vaseem M, Shamim A and He J 2019 IEEE T. Electron Dev. 66 2657 [64] Li C, Cao Q, Wang F, Xiao Y, Li Y, Delaunay J J and Zhu H 2018 Chem. Soc. Rev. 47 4981 [65] Rao G, Wang X, Wang Y, Wang Y. Wang P, Yan C, Chu J, Xue L, Gong C, Huang J, Xiong J and Li Y 2019 InfoMat 1 272 [66] Mueller T, Xia F, Freitag M, Tsang J and Avouris Ph 2009 Phys. Rev. B 79 245430 [67] Shin D H and Choi S H 2018 Micromachines 9 350 [68] Iqbal M A, Liaqat A, Hussain S, Wang X, Tahir M, Urooj Z and Xie L 2020 Adv. Mater. 32 2002628 [69] Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, De Arquer F P G, Gatti F and Koppens F H 2012 Nat. Nanotech. 7 363 [70] Liu Z, Zhao D, Ao J, Chang X, Wang Y, Fu J, Zhang M and Wang H 2018 Opt. Express 26 17092 [71] Wu G, Wang X, Chen Y, Wu S, Wu B, Jiang Y, Shen H, Lin T, Liu Q, Wang X, Zhou P, Zhang S, Hu W, Meng X, Chu J and Wang J 2020 Adv. Mater. 32 1907937 [72] An X, Liu F, Jung Y J and Kar S 2013 Nano Lett. 13 909 [73] Wang X, Cheng Z, Xu K, Tsang H K and Xu J B 2013 Nat. Photon. 7 888 [74] Marcus M S, Simmons J M, Castellini O M, Hamers R J and Eriksson M A 2006 J. Appl. Phys. 100 084306 [75] Luo F, Zhu M, Tan Y, Sun H. Luo W, Peng G, Zhu Z, Zhang X A and Qin S 2018 AIP Adv. 8 115106 [76] Fukushima S, Shimatani M, Okuda S, Ogawa S, Kanai Y, Ono T and Matsumoto K 2018 Appl. Phys. Lett. 113 061102 [77] Fukushima S, Shimatani M, Okuda S, Ogawa S, Kanai Y, Ono T, Inoue K and Matsumoto K 2020 Opt. Eng. 59 037101 [78] Yao W Q, Sun J Z, Chen J Y, Guo Y L, Wu B and Liu Y Q 2021 Acta Phys. Sin. 70 027901 (in Chinese) [79] He J, Kumar N, Bellus M Z, Chiu H Y, He D, Wang Y and Zhao H 2014 Nat. Commun. 5 5622 [80] Chen T, Sheng Y, Zhou Y, Chang R, Wang X, Huang H, Zhang Q, Hou L and Warner J H 2019 ACS Appl. Mater. Inter. 11 6421 [81] Marron J C, Kendrick R L, Seldomridge N, Grow T D and Höft T A 2009 Opt. Express 17 11638 [82] Yu W J, Liu Y, Zhou H, Yin A, Li Z, Huang Y and Duan X 2013 Nat. Nanotech. 8 952 [83] Schwierz F 2010 Nat. Nanotech. 5 487 [84] Bala Kumar S, Seol G and Guo J 2012 Appl. Phys. Lett. 101 033503 [85] Britnell L, Gorbachev R V, Jalil R, Belle B D, Schedin F, Mishchenko A, Georgiou T, Katsnelson M I, Eaves L, Morozov S V, Peres N M R, Leist J, Geim A K, Novoselov K S and Ponomarenko L A 2012 Science 335 947 [86] Zhang K, Fang X, Wang Y, Wan Y, Song Q, Zhai W, Li Y, Ran G, Ye Y and Dai L 2017 ACS Appl. Mater. Inter. 9 5392 [87] He T, Zhao Y, Zhang X, Lin W, Fu K, Sun C, Shi F, Ding X, Yu G, Zhang K, Lu S, Zhang X and Zhang B 2018 Nanophotonics 7 1557 [88] Mao J, Yu Y, Wang L, Zhang X, Wang Y, Shao Z and Jie J 2016 Adv. Sci. 3 1600018 [89] Lin Y C, Ghosh R K, Addou R, Lu N, Eichfeld S M, Zhu H, Li M Y, Peng X, Kim M J, Li L J, Wallace R M, Datta S and Robinson J A 2015 Nat. Commun. 6 7311 [90] Mishchenko A, Tu J S, Cao R Y, et al. 2014 Nat. Nanotech. 9 808 [91] Meng J, Song H D, Li C Z, Jin Y, Tang L, Liu D, Liao Z M, Xiu F and Yu D P 2015 Nanoscale 7 11611 [92] Chen T, Sheng Y, Zhou Y, Chang R, Wang X, Huang H, Zhang Q, Hou L and Warner J H 2019 ACS Appl. Mater. Inter. 11 6421 [93] Liu B, Chen Y, You C, Liu Y, Kong X, Li J, Li S, Deng W, Li Y, Yan H and Zhang Y 2019 J. Alloys Compd. 779 140 [94] Chen T, Lu Y, Sheng Y, Shu Y, Li X, Chang R J, Bhaskaran H and Warner J H 2019 ACS Appl. Mater. Inter. 11 48172 [95] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotech. 6 147 [96] Xu X, Zhang Y, Yan Q, Liu J J, Wang J, Xu X L and Hua D X 2021 Acta Phys. Sin. 70 098203 (in Chinese) [97] Frey G L, Elani S, Homyonfer M, Feldman Y and Tenne R 1998 Phys. Rev. B 57 6666 [98] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805 [99] Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M and Chhowalla M 2011 Nano Lett. 11 5111 [100] Choi W, Cho M Y, Konar A, Lee J H, Cha G B, Hong S C, Kim S, Kim J, Jena D, Joo J and Kim S 2012 Adv. Mater. 24 5832 [101] Gong X, Tong M, Xia Y, Cai W, Moon J S, Cao Y, Yu G, Shieh C L, Nilsson B and Heeger A J 2009 Science 325 1665 [102] Huang Z, Han W, Tang H, Ren L, Chander D S, Qi X and Zhang H 2015 2D Mater. 2 035011 [103] Fazio D D, Goykhman I, Yoon D, Bruna M, Eiden A, Milana S, Sassi U, Barbone M, Dumcenco D, Marinov K, Kis A and Ferrari A C 2016 ACS Nano 10 8252 [104] Hossain R F, Deaguero I G, Boland T and Kaul A B 2017 Npj 2D Mater. Appl. 1 28 [105] Withers F, Yang H, Britnell L, Rooney A P, Lewis E, Felten A, Kim Y J, Yeates S G, Haigh S J, Geim A K, Novoselov K S and Casiraghi C 2014 Nano Lett. 14 3987 [106] Li J, Naiini M M, Vaziri S, Lemme M C and Östling M 2014 Adv. Funct. Mater. 24 6524 [107] Sun B, Shi T, Liu Z, Wu Y, Zhou J and Liao G 2018 Mater. Design 154 1 [108] Lee I, Kang W T, Shin Y S, Kim Y R, Won U Y, Kim K, Duong D L, Lee K, Heo J, Lee Y H and Yu W J 2019 ACS Nano 13 8392 [109] Lee I, Kang W T, Kim J E, Kim Y R, Won U Y, Lee Y H and Yu W J 2020 ACS Nano 14 7574 [110] Rossi A, Büch H, Rienzo C D, Miseikis V, Convertino D, Temimy A A, Voliani V, Gemmi M, Piazza V and Coletti C 2016 2D Mater. 3 031013 [111] Bernardi M, Palummo M and Grossman J C 2013 Nano Lett. 13 3664 [112] Hanbicki A T, Currie M, Kioseoglou G, Friedman A L and Jonker B T 2015 Solid State Commun. 203 16 [113] Zhu B, Chen X and Cui X 2015 Sci. Rep. 5 9218 [114] Lan C, Zhou Z, Zhou Z, Li C, Shu L, Shen L, Li D, Dong R, Yip S and Ho J C 2018 Nano Res. 11 3371 [115] Tan H, Fan Y, Zhou Y, Chen Q, Xu W and Warner J H 2016 ACS Nano 10 7866 [116] Lan C, Li C, Wang S, He T, Zhou Z, Wei D, Guo H, Yang H and Liu Y 2017 J. Mater. Chem. C 5 1494 [117] Mehew J D, Unal S, Torres Alonso E, Jones G F, Fadhil Ramadhan S, Craciun M F and Russo S 2017 Adv. Mater. 29 1700222 [118] Xiao R, Lan C, Li Y, Zeng C, He T, Wang S, Li C, Yin Y and Liu Y 2019 Adv. Mater. Interfaces 6 1901304 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|