Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇)1,†, Xiu-Ming Dou(窦秀明)2, Bao-Quan Sun(孙宝权)2, Ren-Qin Dou(窦仁琴)3, Qing-Li Zhang(张庆礼)3, Bao Liu(刘鲍)1, Pu-Geng Hou(侯朴赓)1, Kai-Lin Chi(迟凯粼)1, and Kun Ding(丁琨)2
1 School of Science, Northeast Electric Power University, Jilin 132012, China; 2 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 3 Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
Abstract Luminescent properties of Tm3+-doped GdYTaO4 are studied for exploring their potential applications in temperature and pressure sensing. Two main emission peaks from 3H43H6 transition of Tm3+ are investigated. Intensity ratio between the two peaks evolves exponentially with temperature and has a highest sensitivity of 0.014 K-1 at 32 K. The energy difference between the two peaks increases linearly with pressure increasing at a rate of 0.38 meV/GPa. Intensity ratio between the two peaks and their emission lifetimes are also analyzed for discussing the pressure-induced variation of the sample structure. Moreover, Raman spectra recorded under high pressures indicate an isostructural phase transition of GdYTaO4 occurring at 4.46 GPa.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11804047) and the Science and Technology Development Program of Jilin City, China (Grant No. 201831733).
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨) Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4 2022 Chin. Phys. B 31 017101
[1] Sun J S, Li X P, Wu J L, Li S W, Shi L L, Xu S, Zhang J S, Cheng L H and Chen B J 2017 Acta Phys. Sin.66 100201 (in Chinese) [2] Dai L, Liu C R, Han X B, Wang L P, Shao Y and Xu Y H 2018 Chin. Phys. B27 114217 [3] Nyk M, Kumar R, Ohulchanskyy T Y, Bergey E J and Prasad P N 2008 Nano Lett.8 3834 [4] Zheng W, Zhu H M, Li R F, Tu D T, Liu Y S, Luo W Q and Chen X Y 2012 Phys. Chem. Chem. Phys.14 6974 [5] Li J, Zhang J H, Zhang X, Hao Z D and Luo Y S 2014 J. Alloys Compd.583 96 [6] Zhang X Y, Wang J G, Xu C L, Pan Y, Hou Z Y, Ding J, Cheng L and Gao D L 2016 Acta Phys. Sin.65 204205 (in Chinese) [7] Quintanilla M, Cantelar E, Cussó F, Barreda-Argüeso J A, González J, Valiente R and Rodríguez F 2015 Opt. Mater. Express5 1168 [8] Ren X K, Du C L, Li C B, Yu L, Zhao J Q and Ruan S C 2016 Chin. Phys. Lett.33 114203 [9] Dou R Q, Zhang Q L, Gao J Y, Chen Y Z, Ding S J, Peng F, Liu W P and Sun D L 2018 Crystals8 55 [10] Dou R Q, Zhang Q L, Liu W P, Luo J Q, Wang X F, Ding S J and Sun D L 2015 Opt. Mater.48 80 [11] Nakauchi D, Koshimizu M, Okada G and Yanagida T 2017 Radiat. Meas.106 129 [12] Peng F, Yang H J, Zhang Q L, Luo J Q, Sun D L, Liu W P, Sun G H, Dou R Q, Wang X F and Xing X 2015 Opt. Mater. Express5 2536 [13] Yang H J, Peng F, Zhang Q L, Guo C X, Shi C S, Liu W P, Sun G H, Zhao Y P, Zhang D M, Sun D L, Yin S T, Gu M and Mao R H 2014 Cryst. Eng. Comm.16 2480 [14] Wu P, Zhou Y X, Wu F S, Hu M Y, Chong X Y and Feng J 2019 J. Am. Ceram. Soc.102 7656 [15] Klotz S, Chervin J C, Munsch P and Le March G 2009 J. Phys. D: Appl. Phys.42 075413 [16] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res.91 4673 [17] Li D Y, Wang Y X, Zhang X R, Yang K, Liu L and Song Y L 2012 Opt. Commun.285 1925 [18] Tiseanu C, Lupei A and Lupei V 1995 J. Phys.: Condens. Matter7 8477 [19] Wamsley P R and Bray K L 1994 J. Lumin.60-61 188 [20] Barnett J D, Block S and Piermarini G J 1973 Rev. Sci. Instrum.44 1 [21] Siqueira K P F and Carvalho G B 2011 Dalton Trans.40 9454 [22] Feng J, Shian S, Xiao B and Clarke D R 2014 Phys. Rev. B90 094102 [23] Blasse G 1973 J. Solid State Chem.7 169 [24] Long Y W, Yang L X, Yu Y, Li F Y, Yu R C, Ding S, Liu Y L and Jin C Q 2006 Phys. Rev. B74 054110 [25] Pellicer-Porres J, Garg A B, Vázquez-Socorro D, Martínez-García D, Popescu C and Errandonea D 2017 J. Solid State Chem.251 14 [26] Garg A B, Rao R, Errandonea D, Pellicer-Porres J, Martinez-Garcia D and Popescu C 2020 J. Appl. Phys.127 175905 [27] Hou J W, Zhou R, Zhang J W, Wang Z P, Zhang Z M and Ding Z J 2017 J. Phys. Chem. C121 14787 [28] Bandiello E, Errandonea D, Piccinelli F, Bettinelli M, Díaz-Anichtchenko D and Popescu C 2019 J. Phys. Chem. C123 30732 [29] Gonzalez-Platas J, Rodriguez-Hernandez P, Muñoz A, Rodríguez-Mendoza U R, Nènert G and Errandonea D 2019 Crystals9 643
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.