Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 090601    DOI: 10.1088/1674-1056/ac5392
GENERAL Prev   Next  

Effective sideband cooling in an ytterbium optical lattice clock

Jin-Qi Wang(王进起)1,2,3, Ang Zhang(张昂)1,2,3, Cong-Cong Tian(田聪聪)1,2,3, Ni Yin(殷妮)1,2,3, Qiang Zhu(朱强)1,2, Bing Wang(王兵)1,2, Zhuan-Xian Xiong(熊转贤)1,2,†, Ling-Xiang He(贺凌翔)1,2,‡, and Bao-Long Lv(吕宝龙)1,2
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China;
2 Key Laboratory of Atomic Frequency Standards, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Sideband cooling is a key technique for improving the performance of optical atomic clocks by preparing cold atoms and single ions into the ground vibrational state. In this work, we demonstrate detailed experimental research on pulsed Raman sideband cooling in a $^{171}$Yb optical lattice clock. A sequence comprised of interleaved 578 nm cooling pulses resonant on the 1st-order red sideband and 1388 nm repumping pulses is carried out to transfer atoms into the motional ground state. We successfully decrease the axial temperature of atoms in the lattice from 6.5 μK to less than 0.8 μK in the trap depth of 24 μK, corresponding to an average axial motional quantum number $\langle n_z\rangle<0.03$. Rabi oscillation spectroscopy is measured to evaluate the effect of sideband cooling on inhomogeneous excitation. The maximum excitation fraction is increased from 0.8 to 0.86, indicating an enhancement in the quantum coherence of the ensemble. Our work will contribute to improving the instability and uncertainty of Yb lattice clocks.
Keywords:  sideband cooling      ytterbium      optical atomic clock      optical lattice  
Received:  18 September 2021      Revised:  23 January 2022      Accepted manuscript online:  10 February 2022
PACS:  06.20.-f (Metrology)  
  06.30.Ft (Time and frequency)  
  37.10.Jk (Atoms in optical lattices)  
  37.10.De (Atom cooling methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. U20A2075).
Corresponding Authors:  Zhuan-Xian Xiong, Ling-Xiang He     E-mail:  zxxiong@apm.ac.cn;helx@wipm.ac.cn

Cite this article: 

Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙) Effective sideband cooling in an ytterbium optical lattice clock 2022 Chin. Phys. B 31 090601

[1] McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H and Ludlow A D 2018 Nature 564 87
[2] Oelker E, Hutson R, Kennedy C, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J, Marti G, Matei D, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U and Ye J 2019 Nat. Photon. 13 714
[3] Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L and Ye J 2014 Nature 506 71
[4] Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L and Ye J 2015 Nat. Commun. 6 6896
[5] Bothwell T, Kedar D, Oelker E, Robinson J, Bromley S, Tew W, Ye J and Kennedy C 2019 Metrologia 56 065004
[6] Campbell S L, Hutson R B, Marti G E, Goban A, Oppong N D, McNally R L, Sonderhouse L, Robinson J M, Zhang W and Bloom B J 2017 Science 358 90
[7] Weyers S, Hübner U, Schröder R, Tamm C and Bauch A 2003 Metrologia 38 343
[8] Heavner T P, Jefferts S R, Donley E A, Shirley J H and Parker T E 2005 Metrologia 42 411
[9] Riehle F, Gill P, Arias F and Robertsson L 2018 Metrologia 55 188
[10] Riehle F 2015 C. R. Phys. 16 506
[11] Godun R M, Nisbet-Jones P B R, Jones J M, King S A, Johnson L A M, Margolis H S, Szymaniec K, Lea S N, Bongs K and Gill P 2014 Phys. Rev. Lett. 113 210801
[12] Derevianko A and Pospelov M 2014 Nat. Phys. 10 933
[13] Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L and Ye J 2016 Phys. Rev. D 94 124043
[14] Mehlstaubler T E, Grosche G, Lisdat C, Schmidt P O and Denker H 2018 Rep. Prog. Phys. 81 064401
[15] Chou C W, Hume D B, Rosenband T and Wineland D J 2010 Science 329 1630
[16] Takamoto M, Hong F L, Higashi R and Katori H 2005 Nature 435 321
[17] Katori and Hidetoshi 2011 Nat. Photon. 5 203
[18] Lemke N D, von Stecher J, Sherman J A, Rey A M, Oates C W and Ludlow A D 2011 Phys. Rev. Lett. 107 103902
[19] Ludlow A D, Lemke N D, Sherman J A, Oates C W, Quemener G, von Stecher J and Rey A M 2011 Phys. Rev. A 84 52724
[20] Kerman A J, Vuleti V, Chin C, and Chu S 2000 Phys. Rev. Lett. 84 439
[21] Yong W, Gebert F, Wolf F and Schmidt P O 2015 Phys. Rev. A 91 043425
[22] Chen J S, Brewer S, Chou C, Wineland D, Leibrandt D and Hume D 2017 Phys. Rev. Lett. 118 053002
[23] Teufel J D, Donner T, Li D, Harlow J W, Allman M S, Cicak K, Sirois A J, Whittaker J D, Lehnert K W and Simmonds R W 2011 Nature 475 359
[24] Monroe C, Meekhof D M, King B E, Jefferts S R, Itano W M, Wineland D J and Gould P 1995 Phys. Rev. Lett. 75 4011
[25] Liu Hui, Zhang Xi, Jiang Kun Liang, Wang Jin Qi, Zhu Qiang, Xiong Zhuan Xian, He Ling Xiang and Long L B 2017 Chin. Phys. Lett. 34 020601
[26] Zhang M J, Liu H, Zhang X, Jiang K L, Xiong Z X, Lu B L and He L X 2016 Chin. Phys. Lett. 33 070601
[27] Blatt S, Thomsen J W, Campbell G K, Ludlow A D, Swallows M D, Martin M J, Boyd M M and Ye J 2009 Phys. Rev. A 80 052703
[28] Brown R C, Phillips N B, Beloy K, McGrew W F, Schioppo M, Fasano R J, Milani G, Zhang X, Hinkley N, Leopardi H, Yoon T H, Nicolodi D, Fortier T M and Ludlow A D 2017 Phys. Rev. Lett. 119 253001
[1] Ridge regression energy levels calculation of neutral ytterbium (Z = 70)
Yushu Yu(余雨姝), Chen Yang(杨晨), and Gang Jiang(蒋刚). Chin. Phys. B, 2023, 32(3): 033101.
[2] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[3] Theoretical calculations on Landé $g$-factors and quadratic Zeeman shift coefficients of $n$s$n$p $^{3} {P}^{o}_{0}$ clock states in Mg and Cd optical lattice clocks
Benquan Lu(卢本全) and Hong Chang(常宏). Chin. Phys. B, 2023, 32(1): 013101.
[4] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[5] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[6] Theoretical calculation of the quadratic Zeeman shift coefficient of the 3P0o clock state for strontium optical lattice clock
Benquan Lu(卢本全), Xiaotong Lu(卢晓同), Jiguang Li(李冀光), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(4): 043101.
[7] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[8] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[9] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
[10] Nonlinear dynamical stability of gap solitons in Bose-Einstein condensate loaded in a deformed honeycomb optical lattice
Hongjuan Meng(蒙红娟), Yushan Zhou(周玉珊), Xueping Ren(任雪平), Xiaohuan Wan(万晓欢), Juan Zhang(张娟), Jing Wang(王静), Xiaobei Fan(樊小贝), Wenyuan Wang(王文元), and Yuren Shi(石玉仁). Chin. Phys. B, 2021, 30(12): 126701.
[11] A 61-mJ, 1-kHz cryogenic Yb: YAG laser amplifier
Huijun He(何会军), Jun Yu(余军), Wentao Zhu(朱文涛), Qingdian Lin(林庆典), Xiaoyang Guo(郭晓杨), Cangtao Zhou(周沧涛), and Shuangchen Ruan(阮双琛). Chin. Phys. B, 2021, 30(12): 124206.
[12] Fulde-Ferrell-Larkin-Ovchinnikov states in equally populated Fermi gases in a two-dimensional moving optical lattice
Jin-Ge Chen(陈金鸽), Yue-Ran Shi(石悦然), Ren Zhang(张仁), Kui-Yi Gao(高奎意), and Wei Zhang(张威). Chin. Phys. B, 2021, 30(10): 100305.
[13] Study of optical clocks based on ultracold 171Yb atoms
Di Ai(艾迪), Hao Qiao(谯皓), Shuang Zhang(张爽), Li-Meng Luo(骆莉梦), Chang-Yue Sun(孙常越), Sheng Zhang(张胜), Cheng-Quan Peng(彭成权), Qi-Chao Qi(齐启超), Tao-Yun Jin(金涛韫), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2020, 29(9): 090601.
[14] Generating two-dimensional quantum gases with high stability
Bo Xiao(肖波), Xuan-Kai Wang(王宣恺), Yong-Guang Zheng(郑永光), Yu-Meng Yang(杨雨萌), Wei-Yong Zhang(章维勇), Guo-Xian Su(苏国贤), Meng-Da Li(李梦达), Xiao Jiang(江晓), Zhen-Sheng Yuan(苑震生). Chin. Phys. B, 2020, 29(7): 076701.
[15] A transportable optical lattice clock at the National Time Service Center
De-Huan Kong(孔德欢), Zhi-Hui Wang(王志辉), Feng Guo(郭峰), Qiang Zhang(张强), Xiao-Tong Lu(卢晓同), Ye-Bing Wang(王叶兵), Hong Chang(常宏). Chin. Phys. B, 2020, 29(7): 070602.
No Suggested Reading articles found!