Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 016801    DOI: 10.1088/1674-1056/ac34fe
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Three-dimensional vertical ZnO transistors with suspended top electrodes fabricated by focused ion beam technology

Chi Sun(孙驰)1,2, Linyuan Zhao(赵林媛)4, Tingting Hao(郝婷婷)1,2, Renrong Liang(梁仁荣)4,5, Haitao Ye(叶海涛)6, Junjie Li(李俊杰)1,2,3, and Changzhi Gu(顾长志)1,2,†
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Acdemy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China;
4 Institute of Microelectronics, Tsinghua University, Beijing 100084, China;
5 Beijing National Research Center for Information Science and Technology(BNRist), Tsinghua University, Beijing 100084, China;
6 Department of Engineering, University of Leicester, Leicester LE17 RH, U
Abstract  Three-dimensional (3D) vertical architecture transistors represent an important technological pursuit, which have distinct advantages in device integration density, operation speed, and power consumption. However, the fabrication processes of such 3D devices are complex, especially in the interconnection of electrodes. In this paper, we present a novel method which combines suspended electrodes and focused ion beam (FIB) technology to greatly simplify the electrodes interconnection in 3D devices. Based on this method, we fabricate 3D vertical core-double shell structure transistors with ZnO channel and Al2O3 gate-oxide both grown by atomic layer deposition. Suspended top electrodes of vertical architecture could be directly connected to planar electrodes by FIB deposited Pt nanowires, which avoid cumbersome steps in the traditional 3D structure fabrication technology. Both single pillar and arrays devices show well behaved transfer characteristics with an Ion/Ioff current ratio greater than 106 and a low threshold voltage around 0 V. The ON-current of the 2×2 pillars vertical channel transistor was 1.2 μA at the gate voltage of 3 V and drain voltage of 2 V, which can be also improved by increasing the number of pillars. Our method for fabricating vertical architecture transistors can be promising for device applications with high integration density and low power consumption.
Keywords:  three-dimensional (3D) vertical ZnO transistor      focused ion beam (FIB)      suspended electrodes      the electrical inter-connection in 3D devices  
Received:  27 September 2021      Revised:  27 October 2021      Accepted manuscript online:  01 November 2021
PACS:  68.35.bg (Semiconductors)  
  72.15.-v (Electronic conduction in metals and alloys)  
  73.50.-h (Electronic transport phenomena in thin films)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0200400 and 2016YFA0200800), the National Natural Science Foundation of China (Grant Nos. 61888102, 12074420, and 11674387), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33000000), and Key Research Program of Frontier Sciences, Chinese Acdemy of Sciences (Grant No. QYZDJ-SSWSLH042).
Corresponding Authors:  Changzhi Gu     E-mail:  czgu@iphy.ac.cn

Cite this article: 

Chi Sun(孙驰), Linyuan Zhao(赵林媛), Tingting Hao(郝婷婷), Renrong Liang(梁仁荣), Haitao Ye(叶海涛), Junjie Li(李俊杰), and Changzhi Gu(顾长志) Three-dimensional vertical ZnO transistors with suspended top electrodes fabricated by focused ion beam technology 2022 Chin. Phys. B 31 016801

[1] Sachid A B, Tosun M, Desai S B, Hsu C Y, Lien D H, Madhvapathy S R, Chen Y Z, Hettick M, Kang J S, Zeng Y, He J H, Chang E Y, Chueh Y L, Javey A and Hu C 2016 Adv. Mater. 28 2547
[2] Hashemi P, Gomez L and Hoyt J L 2009 IEEE Electron Device Lett. 30 401
[3] Persson K M, Berg M, Borg M B, Wu J, Johansson S, Svensson J, Jansson K, Lind E and Wernersson L E 2013 IEEE Trans. Electron Dev. 60 2761
[4] Lembke D and Kis A 2012 ACS Nano 6 10070
[5] Kang H Y, Hu H Y and Wang B 2016 Chin. Phys. B 25 118501
[6] Song Y, Zhang C, Dowdy R, Chabak K, Mohseni P K, Choi W and Li X 2014 IEEE Electron Device Lett. 35 324
[7] Yakimets D, Eneman G, Schuddinck P, Trong Huynh Bao, Bardon M G, Raghavan P, Veloso A, Collaert N, Mercha A, Verkest D, Voon-Yew Thean A and De Meyer K 2015 IEEE Trans. Electron Devices 62 1433
[8] Chen L, Cai F, Otuonye U and Lu W D 2016 Nano Lett. 16 420
[9] Larrieu G, Guerfi Y, Han X L and Clèment N 2017 Solid-State Electronics 130 9
[10] Thelander C, Rehnstedt C, Froberg L E, Lind E, Martensson T, Caroff P, Lowgren T, Ohlsson B J, Samuelson L and Wernersson L E 2008 IEEE Trans. Electron Dev. 55 3030
[11] Reyntjens S and Puers R 2001 J. Micromech. Microeng. 11 287
[12] Cui A, Li W, Luo Q, Liu Z and Gu C 2012 Appl. Phys. Lett. 100 143106
[13] Hou C X, Zhen X H, Jia R, Tao K, Liu S J, Jiang S, Zhang P F, Sun H C and Li Y T 2017 Chin. Phys. B 26 98103
[14] Lin Y Y, Hsu C C, Tseng M H, Shyue J J and Tsai F Y 2015 ACS Appl. Mater. Interfaces 7 22610
[15] Kwon S, Bang S, Lee S, Jeon S, Jeong W, Kim H, Gong S C, Chang H J, Park H and Jeon H 2009 Semicond. Sci. Technol. 24 035015
[16] Lale A, Grappin A, Mazenq L, Bourrier D, Lecestre A, Launay J and Temple-Boyer P 2017 Proceedings 1 419
[17] Carcia P F, McLean R S and Reilly M H 2006 Appl. Phys. Lett. 88 123509
[18] Hirao T, Furuta M, Furuta H, Matsuda T, Hiramatsu T, Hokari H, Yoshida M, Ishii H and Kakegawa M 2007 J. Soc. Inf. Display 15 17
[19] Hwang C S, Park S H K, Oh H, Ryu M K, Cho K I and Yoon S M 2014 IEEE Electron Device Lett. 35 360
[20] Lee E, Kim T H, Lee S W, Kim J H, Kim J, Jeong T G, Ahn J H and Cho B 2019 Nano Convergence 6 24
[1] Introducing voids around the interlayer of AlN by high temperature annealing
Jianwei Ben(贲建伟), Jiangliu Luo(罗江流), Zhichen Lin(林之晨), Xiaojuan Sun(孙晓娟), Xinke Liu(刘新科), and Xiaohua Li(黎晓华). Chin. Phys. B, 2022, 31(7): 076104.
[2] Synthesis and thermoelectric properties of Bi-doped SnSe thin films
Jun Pang(庞军), Xi Zhang(张析), Limeng Shen(申笠蒙), Jiayin Xu(徐家胤), Ya Nie(聂娅), and Gang Xiang(向钢). Chin. Phys. B, 2021, 30(11): 116302.
[3] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[4] Acetone sensors for non-invasive diagnosis of diabetes based on metal-oxide-semiconductor materials
Yujie Li(李育洁), Min Zhang(张敏), Haiming Zhang(张海明). Chin. Phys. B, 2020, 29(9): 090702.
[5] Epitaxial growth of antimony nanofilms on HOPG and thermal desorption to control the film thickness
Shuya Xing(邢淑雅), Le Lei(雷乐), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑峰), Feiyue Cao(曹飞跃), Shangzhi Gu(顾尚志), Sabir Hussain, Fei Pang(庞斐), Wei Ji(季威), Rui Xu(许瑞), Zhihai Cheng(程志海). Chin. Phys. B, 2020, 29(9): 096801.
[6] Selective linear etching of monolayer black phosphorus using electron beams
Yuhao Pan(潘宇浩), Bao Lei(雷宝), Jingsi Qiao(乔婧思), Zhixin Hu(胡智鑫), Wu Zhou(周武), Wei Ji(季威). Chin. Phys. B, 2020, 29(8): 086801.
[7] Studying the charge carrier properties in CuInS2 films via femtosecond transient absorption and nanosecond transient photocurrents
Mingrui Tan(谭铭瑞), Qinghui Liu(刘庆辉), Ning Sui(隋宁), Zhihui Kang(康智慧), Liquan Zhang(张里荃), Hanzhuang Zhang(张汉壮), Wenquan Wang(王文全), Qiang Zhou(周强), Yinghui Wang(王英惠). Chin. Phys. B, 2019, 28(5): 056106.
[8] PEALD-deposited crystalline GaN films on Si (100) substrates with sharp interfaces
San-Jie Liu(刘三姐), Ying-Feng He(何荧峰), Hui-Yun Wei(卫会云), Peng Qiu(仇鹏), Yi-Meng Song(宋祎萌), Yun-Lai An(安运来), Abdul Rehman(阿布度-拉赫曼), Ming-Zeng Peng(彭铭曾), Xin-He Zheng(郑新和). Chin. Phys. B, 2019, 28(2): 026801.
[9] Se substitution and micro-nano-scale porosity enhancing thermoelectric Cu2Te
Xiaoman Shi(史晓曼), Guoyu Wang(王国玉), Ruifeng Wang(王瑞峰), Xiaoyuan Zhou(周小元), Jingtao Xu(徐静涛), Jun Tang(唐军), Ran Ang(昂然). Chin. Phys. B, 2018, 27(4): 047204.
[10] High mobility ultrathin ZnO p-n homojunction modulated by Zn0.85Mg0.15O quantum barriers
Jing-Jing Yang(杨景景), Qing-Qing Fang(方庆清), Wen-Han Du(杜文汉), Ke-Ke Zhang, Da-Shun Dong(董大舜). Chin. Phys. B, 2018, 27(3): 037804.
[11] Investigation of europium(Ⅲ)-doped ZnS for immunoassay
Chao-Fan Zhu(朱超凡), Xue Sha(沙雪), Xue-Ying Chu(楚学影), Jin-Hua Li(李金华), Ming-Ze Xu(徐铭泽), Fang-Jun Jin(金芳军), Zhi-Kun Xu(徐志堃). Chin. Phys. B, 2018, 27(2): 027803.
[12] A review for compact model of graphene field-effect transistors
Nianduan Lu(卢年端), Lingfei Wang(汪令飞), Ling Li(李泠), Ming Liu(刘明). Chin. Phys. B, 2017, 26(3): 036804.
[13] Optical properties of phosphorene
Jiong Yang, Yuerui Lu(卢曰瑞). Chin. Phys. B, 2017, 26(3): 034201.
[14] Crystallization of amorphous silicon beyond the crystallized polycrystalline silicon region induced by metal nickel
Dongli Zhang(张冬利), Mingxiang Wang(王明湘), Man Wong(王文), Hoi-Sing Kwok(郭海成). Chin. Phys. B, 2017, 26(1): 016601.
[15] Growth condition optimization and mobility enhancement through inserting AlAs monolayer in the InP-based InxGa1-xAs/In0.52Al0.48As HEMT structures
Shu-Xing Zhou(周书星), Ming Qi(齐鸣), Li-Kun Ai(艾立鹍), An-Huai Xu(徐安怀). Chin. Phys. B, 2016, 25(9): 096801.
No Suggested Reading articles found!