Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 114210    DOI: 10.1088/1674-1056/ac012e
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Ultra-longer fiber cantilever taper for simultaneous measurement of temperature and relative humidity

Min Li(李敏)1, Jiwen Yin(尹辑文)1, Weili Yan(闫伟丽)2, Aimin Cong(丛爱民)1,†, Hongjuan Li(李红娟)1, and Wenqiang Ma(马文强)1
1 Chifeng College, College of Physics and Intelligent Manufacturing Engineering, Chifeng 024000, China;
2 Inner Mongolia Traffic Vocational and Technical College, Chifeng 024000, China
Abstract  An ultra-longer fiber cantilever taper for simultaneous measurement of the temperature and relative humidity (RH) with high sensitivities was proposed. The structure was fabricated by using the simple and cost-effective method only including fiber cleaving, splicing, and tapering. The length of the cantilever taper is about 1.5 mm. The dip A and dip B were measured simultaneously, owing to the ultra-long length and super-fine size, the temperature sensitivities of the dip A and dip B reached as high as 127.3 pm/℃ and 0 pm/℃ between 25 ℃ and 50 ℃, and the RH sensitivities are -31.2 pm/% RH and -29.2 pm/% RH with a broad RH interval ranging from 20% RH to 70% RH. Besides, the proposed structure showed good linearity in the sensing process and small temperature crosstalk. It will be found in wide applications in environmental monitoring, food processing, and industries.
Keywords:  sensor      temperature      humidity  
Received:  16 February 2021      Revised:  12 May 2021      Accepted manuscript online:  14 May 2021
PACS:  42.81.Pa (Sensors, gyros)  
  92.60.hv (Pressure, density, and temperature)  
  92.60.jk (Humidity)  
Fund: Project supported by the Scientific Research Project of Institutions of Higher Learning in Inner Mongolia Autonomous Region, China (Grant No. NJZY19214), the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No. 2018MS05064), the Education and Teaching Research Project of Chifeng College (Grant No. JYXMY202025), the Applied Model Curriculum Construction Project of Chifeng College (Grant No. SFK20200904), and the Construction Project of the Key Laboratory of Chifeng College (Grant No. CFXYZD202007).
Corresponding Authors:  Aimin Cong     E-mail:  c15026710904@163.com

Cite this article: 

Min Li(李敏), Jiwen Yin(尹辑文), Weili Yan(闫伟丽), Aimin Cong(丛爱民), Hongjuan Li(李红娟), and Wenqiang Ma(马文强) Ultra-longer fiber cantilever taper for simultaneous measurement of temperature and relative humidity 2021 Chin. Phys. B 30 114210

[1] Zhang Y S, Qiao X G and Shao M 2015 Chin. Phys. Lett. 32 64208
[2] Liu N L, Liu S H and Lu P X 2014 Chin. Phys. Lett. 31 94204
[3] Wen X D, Ning T G and You H D 2014 Chin. Phys. Lett. 31 034203
[4] Ren S, Shang K, Cui M, Wang L, Pu J and Yi P 2019 J. Mater. Sci. 54 11889
[5] Zhao Y, Peng Y, Chen M Q and Tong R J 2018 Sens. Actuators B: Chem. 263 312
[6] Zhang C, Zhang W, Webb D and Peng G 2010 Electron. Lett. 46 643
[7] Rajan D, Verho J, Kreutzer J, Välimäki H, Ihalainen H and Lekkala J 2017 IEEE International Symposium on Medical Measurements and Applications 470
[8] Tadele S and Emana G 2017 J. Hortic. For. 9 66
[9] Berruti G, Consales M, Giordano M, Sansone L, Petagna P and Buontempo S 2013 Sens. Actuators B: Chem. 177 94
[10] Shin J, Yoon M and Han Y 2016 J. Lightwave Technol. 34 4511
[11] Wu Y, Zhang T, Rao Y and Gong Y 2011 Sens. Actuators B: Chem. 155 258
[12] Fu H, Jiang Y, Ding J and Zhang J 2017 IEEE Sens. J. 17 644
[13] Sun L, Semenova Y, Wu Q, Liu D, Yuan J and Sang X 2016 IEEE Photon. J. 8 1
[14] Mathew J, Semenova Y and Farrell G 2013 IEEE Sens. J. 13 1632
[15] Arregui F G, Matías I R, Cooper K L and Claus R O 2002 IEEE Sens. J. 482
[16] Shao M, Zang Y, Qiao X, Fu H and Jia Z 2017 IEEE Sens. J. 17 1302
[17] Woyessa G, Pedersen J K M, Fasano A, Nielsen K, Markos C, Rasmussen H K and Bang O 2017 Opt. Lett. 42 1161
[18] Zhang S, Dong X, Li T, Chan C and Shum P 2013 Opt. Commun. 303 42
[19] Viegas D, Hernaez M, Goicoechea J, Santos J L, Araújo F M, Arregui F and Matias I R 2011 IEEE Sens. J. 11 162
[20] Yang M, Xie W, Dai Y, Lee D, Dai J, Zhang Y and Zhuang Z 2014 Opt. Express 22 11892
[21] Pevec S and Donlagic D 2015 Opt. Lett. 40 5646
[22] Yulianti I, Supa'at A S M, Idrus S M and Anwar M R S 2013 Optik 124 3919
[23] Zhong Y, Tong Z, Zhao X, Zhang W, Qin J, Gao W, Chen X 2019 18th International Conference on Optical Communications and Networks
[24] Zhong Y, Tong Z, Zhang W, Qin J and Gao W 2019 Appl. Opt. 58 7981
[25] Zhang S, Dong X, Li T, Chan C C and Shum P P 2013 Opt. Commun. 303 42
[26] Cheng Q H, Zhang A L, Pan H G, Li W and Sun C 2020 Optoelectron. Lett. 16 0428
[27] Liu Y, Lang C, Wei X and Qu S L 2017 Opt. Express 25 7797
[28] Tian Z, Yam S S H and Loock H P 2008 Opt. Lett. 33 1105
[1] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[2] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[3] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[4] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[5] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[6] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[7] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[8] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[9] Transition-edge sensors using Mo/Au/Au tri-layer films
Hubing Wang(王沪兵), Yue Lv(吕越), Dongxue Li(李冬雪), Yue Zhao(赵越), Bo Gao(高波), and Zhen Wang(王镇). Chin. Phys. B, 2023, 32(2): 028501.
[10] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[11] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[12] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[13] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[14] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[15] Optoelectronic oscillator-based interrogation system for Michelson interferometric sensors
Ling Liu(刘玲), Xiaoyan Wu(吴小龑), Guodong Liu(刘国栋), Tigang Ning(宁提纲),Jian Xu(许建), and Haidong You(油海东). Chin. Phys. B, 2022, 31(9): 090702.
No Suggested Reading articles found!