Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 114209    DOI: 10.1088/1674-1056/ac068e
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Propagations of Fresnel diffraction accelerating beam in Schrödinger equation with nonlocal nonlinearity

Yagang Zhang(张亚港)1, Yuheng Pei(裴宇恒)2, Yibo Yuan(袁一博)2, Feng Wen(问峰)3, Yuzong Gu(顾玉宗)1, and Zhenkun Wu(吴振坤)1,†
1 Institute of Nano/Photon Materials and Application & International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China;
2 College of Miami, Henan University, Kaifeng 475004, China;
3 Key Laboratory for Physical Electronics and Devices of the Ministry of Education & School of Science & Shaanxi Key Laboratory of Information Photonic Technique & Institute of Wide Bandgap Semiconductors, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  Accelerating beams have been the subject of extensive research in the last few decades because of their self-acceleration and diffraction-free propagation over several Rayleigh lengths. Here, we investigate the propagation dynamics of a Fresnel diffraction beam using the nonlocal nonlinear Schrödinger equation (NNLSE). When a nonlocal nonlinearity is introduced into the linear Schrödinger equation without invoking an external potential, the evolution behaviors of incident Fresnel diffraction beams are modulated regularly, and certain novel phenomena are observed. We show through numerical calculations, under varying degrees of nonlocality, that nonlocality significantly affects the evolution of Fresnel diffraction beams. Further, we briefly discuss the two-dimensional case as the equivalent of the product of two one-dimensional cases. At a critical point, the Airy-like intensity profile oscillates between the first and third quadrants, and the process repeats during propagation to yield an unusual oscillation. Our results are expected to contribute to the understanding of NNLSE and nonlinear optics.
Keywords:  Fresnel diffraction beams, nonlocal nonlinearity, real space, momentum space, three-dimensional (3D) Schrö      dinger equation  
Received:  06 May 2021      Revised:  26 May 2021      Accepted manuscript online:  29 May 2021
PACS:  42.25.Fx (Diffraction and scattering)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Gy (Edge and boundary effects; reflection and refraction)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61805068, 61875053, and 62074127), China Postdoctoral Science Foundation (Grant No. 2017M620300), and the Fund from the Science and Technology Department of Henan Province, China (Grant No. 202102210111).
Corresponding Authors:  Zhenkun Wu     E-mail:  wuzk1121@henu.edu.cn

Cite this article: 

Yagang Zhang(张亚港), Yuheng Pei(裴宇恒), Yibo Yuan(袁一博), Feng Wen(问峰), Yuzong Gu(顾玉宗), and Zhenkun Wu(吴振坤) Propagations of Fresnel diffraction accelerating beam in Schrödinger equation with nonlocal nonlinearity 2021 Chin. Phys. B 30 114209

[1] Siviloglou G A and Christodoulides D N 2007 Opt. Lett. 32 979
[2] Siviloglou G A, Broky J, Dogariu A and Christodoulides D N 2007 Phys. Rev. Lett. 99 213901
[3] Broky J, Siviloglou G A, Dogariu A and Christodoulides D N 2008 Opt. Express 16 12880
[4] Ellenbogen T, Voloch-Bloch N, GananyPadowicz A and Arie A 2009 Nat. Photon. 3 395
[5] Chong A, Renninger W H, Christodoulides D N and Wise F W 2010 Nat. Photon. 4 103
[6] Zhou J X, Liu Y H, Ke Y G, Luo H L and Wen S C 2015 Opt. Lett. 40 3193
[7] Wu W J, Zhang W S, Chen S Z, Ling X H, Shu W X, Luo H L, Wen S C and Yin X B 2018 Opt. Express 26 23705
[8] Xu D Y, He S S, Zhou J X, Chen S Z, Wen S C and Luo H L 2020 Opt. Lett. 45 6867
[9] Berry M V and Balazs N L 1979 Am. J. Phys. 47 264
[10] Lin C L, Hsiung T C and Huang M J 2008 Europhys. Lett. 83 30002
[11] Durnin J 1987 J. Opt. Soc. Am. A 4 651
[12] Bouchal Z 2003 Czech. J. Phys. 53 537
[13] Wu Z K and Gu Y Z 2019 Commun. Theor. Phys. 71 741
[14] Chen Y H, Wu L X, Mo Z X, Wu L C and Deng D M 2021 Chin. Phys. B 30 014204
[15] He S L, Malomed B A, Mihalache D, Peng X, Yu X, He Y J and Deng D M 2021 Chaos, Solitons and Fractals 142 110470
[16] Liu X Y, Sun C and Deng D M 2021 Chin. Phys. B 30 024202
[17] Chen B, Chen C D, Peng X, Peng Y L, Zhou M L, Deng D M and Guo H 2016 J. Opt. 18 055504
[18] Zhang X H, Wang F L, Bai L Y, Lou C B and Liang Y 2020 Chin. Phys. B 29 064204
[19] Zhu Y F and Geng T 2020 Acta Phys. Sin. 69 014205 (in Chinese)
[20] Chen X P, Xu C J, Yang Q, Luo Z M, Li X X and Deng D M 2020 Chin. Phys. B 29 064202
[21] Zhang P, Hu Y, Li T, Cannan D, Yin X, Morandotti R, Chen Z and Zhang X 2012 Phys. Rev. Lett. 109 193901
[22] Kaminer I, Segev M and Christodoulides D N 2011 Phys. Rev. Lett. 106 213903
[23] Lotti A, Faccio D, Couairon A, Papazoglou D G, Panagiotopoulos P, Abdollahpour D and Tzortzakis S 2011 Phys. Rev. A 84 021807
[24] Panagiotopoulos P, Abdollahpour D, Lotti A, Couairon A, Faccio D, Papazoglou D G and Tzortzakis S 2012 Phys. Rev. A 86 013842
[25] Efremidis N K, Paltoglou V and von Klitzing W 2013 Phys. Rev. A 87 043637
[26] Zhuang F, Shen J, Du X and Zhao D 2012 Opt. Lett. 37 3054
[27] Ru J M, Wu Z K, Zhang Y G, Wen F and Gu Y Z 2020 Front. Phys. 15 52503
[28] Zhuang F, Du X, Ye Y and Zhao D 2012 Opt. Lett. 37 1871
[29] Kaminer I, Nemirovsky J, Makris K G and Segev M 2013 Opt. Express 21 8886
[30] Kong Q, Wang Q, Bang O and Krolikowski W 2010 Phys. Rev. A 82 013826
[31] Hu W, Zhang T and Guo Q 2006 Appl. Phys. Lett. 89 071111
[32] Bekenstein R and Segev M 2011 Opt. Express 19 23706
[33] Wu Z K, Wang Z P, Guo H and Gu Y Z 2017 Opt. Express 25 30468
[34] Zhou G Q, Chen R P and Ru G Y 2014 Laser Phys. Lett. 11 105001
[35] Bekenstein R, Schley R, Mutzafi M, Rotschild C and Segev M 2015 Nat. Phys. 11 872
[36] Peccianti M, Conti C, Assanto G, De Luca A and Umeton C 2004 Nature 432 733
[37] Rotschild C, Alfassi B, Cohen O and Segev M 2006 Nat. Phys. 2 769
[38] Wu Z K, Li P, Zhang Y B, Guo H and Gu Y Z 2019 J. Opt. 21 105602
[39] Xu X M and Taha T 2003 J. Math. Model. Algorithms 2 185
[40] Muslu G M and Erbay H A 2005 Math. Comput. Simulat. 67 581
[41] Zhang Y Q, Belić M R, Zheng H B, Wu Z K, Li Y Y, Lu K Q and Zhang Y P 2013 Europhys. Lett. 104 34007
[42] Zhang Y Q, Belić M R, Zheng H B, Chen H X, Li C B, Li Y Y and Zhang Y P 2014 Opt. Express 22 7160
[43] Zhang Y Q, Belić M R, Wu Z K, Zheng H B, Lu K Q, Li Y Y and Zhang Y P 2013 Opt. Lett. 38 4585
[44] Zhang Y Q, Liu X, Belić M R, Zhong W P, Zhang Y P and Xiao M 2015 Phys. Rev. Lett. 115 180403
[45] Wu Z K, Zhang Y G, Ru J M and Gu Y Z 2020 Results Phys. 16 103008
[46] Zhang Y G, Wu Z K, Ru J M, Wen F and Gu Y Z 2020 J. Opt. Soc. A B 37 3414
[47] Eichelkraut T J, Siviloglou G A, Besieris I M and Christodoulides D N 2010 Opt. Lett. 35 3655
[48] Wu Z K, Li P and Gu Y Z 2016 Front. Phys. 12 124203
[1] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[2] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[3] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[4] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[5] Photoelectron momentum distributions of Ne and Xe dimers in counter-rotating circularly polarized laser fields
Zhi-Xian Lei(雷志仙), Qing-Yun Xu(徐清芸), Zhi-Jie Yang(杨志杰), Yong-Lin He(何永林), and Jing Guo(郭静). Chin. Phys. B, 2022, 31(6): 063202.
[6] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[7] Exact solutions of the Schrödinger equation for a class of hyperbolic potential well
Xiao-Hua Wang(王晓华), Chang-Yuan Chen(陈昌远), Yuan You(尤源), Fa-Lin Lu(陆法林), Dong-Sheng Sun(孙东升), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(4): 040301.
[8] Solving the time-dependent Schrödinger equation by combining smooth exterior complex scaling and Arnoldi propagator
Shun Wang(王顺) and Wei-Chao Jiang(姜维超). Chin. Phys. B, 2022, 31(1): 013201.
[9] Comparative study of photoionization of atomic hydrogen by solving the one- and three-dimensional time-dependent Schrödinger equations
Shun Wang(王顺), Shahab Ullah Khan, Xiao-Qing Tian(田晓庆), Hui-Bin Sun(孙慧斌), and Wei-Chao Jiang(姜维超). Chin. Phys. B, 2021, 30(8): 083301.
[10] Approximate analytical solutions and mean energies of stationary Schrödinger equation for general molecular potential
Eyube E S, Rawen B O, and Ibrahim N. Chin. Phys. B, 2021, 30(7): 070301.
[11] Closed form soliton solutions of three nonlinear fractional models through proposed improved Kudryashov method
Zillur Rahman, M Zulfikar Ali, and Harun-Or Roshid. Chin. Phys. B, 2021, 30(5): 050202.
[12] Novel traveling wave solutions and stability analysis of perturbed Kaup-Newell Schrödinger dynamical model and its applications
Xiaoyong Qian(钱骁勇), Dianchen Lu(卢殿臣), Muhammad Arshad, and Khurrem Shehzad. Chin. Phys. B, 2021, 30(2): 020201.
[13] Analysis of the rogue waves in the blood based on the high-order NLS equations with variable coefficients
Ying Yang(杨颖), Yu-Xiao Gao(高玉晓), and Hong-Wei Yang(杨红卫). Chin. Phys. B, 2021, 30(11): 110202.
[14] Variation of electron density in spectral broadening process in solid thin plates at 400 nm
Si-Yuan Xu(许思源), Yi-Tan Gao(高亦谈), Xiao-Xian Zhu(朱孝先), Kun Zhao(赵昆), Jiang-Feng Zhu(朱江峰), and Zhi-Yi Wei(魏志义). Chin. Phys. B, 2021, 30(10): 104205.
[15] Collapse arrest in the space-fractional Schrödinger equation with an optical lattice
Manna Chen(陈曼娜), Hongcheng Wang(王红成), Hai Ye(叶海), Xiaoyuan Huang(黄晓园), Ye Liu(刘晔), Sumei Hu(胡素梅), and Wei Hu(胡巍). Chin. Phys. B, 2021, 30(10): 104206.
No Suggested Reading articles found!