ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Propagations of Fresnel diffraction accelerating beam in Schrödinger equation with nonlocal nonlinearity |
Yagang Zhang(张亚港)1, Yuheng Pei(裴宇恒)2, Yibo Yuan(袁一博)2, Feng Wen(问峰)3, Yuzong Gu(顾玉宗)1, and Zhenkun Wu(吴振坤)1,† |
1 Institute of Nano/Photon Materials and Application & International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China; 2 College of Miami, Henan University, Kaifeng 475004, China; 3 Key Laboratory for Physical Electronics and Devices of the Ministry of Education & School of Science & Shaanxi Key Laboratory of Information Photonic Technique & Institute of Wide Bandgap Semiconductors, Xi'an Jiaotong University, Xi'an 710049, China |
|
|
Abstract Accelerating beams have been the subject of extensive research in the last few decades because of their self-acceleration and diffraction-free propagation over several Rayleigh lengths. Here, we investigate the propagation dynamics of a Fresnel diffraction beam using the nonlocal nonlinear Schrödinger equation (NNLSE). When a nonlocal nonlinearity is introduced into the linear Schrödinger equation without invoking an external potential, the evolution behaviors of incident Fresnel diffraction beams are modulated regularly, and certain novel phenomena are observed. We show through numerical calculations, under varying degrees of nonlocality, that nonlocality significantly affects the evolution of Fresnel diffraction beams. Further, we briefly discuss the two-dimensional case as the equivalent of the product of two one-dimensional cases. At a critical point, the Airy-like intensity profile oscillates between the first and third quadrants, and the process repeats during propagation to yield an unusual oscillation. Our results are expected to contribute to the understanding of NNLSE and nonlinear optics.
|
Received: 06 May 2021
Revised: 26 May 2021
Accepted manuscript online: 29 May 2021
|
PACS:
|
42.25.Fx
|
(Diffraction and scattering)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
42.25.Gy
|
(Edge and boundary effects; reflection and refraction)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61805068, 61875053, and 62074127), China Postdoctoral Science Foundation (Grant No. 2017M620300), and the Fund from the Science and Technology Department of Henan Province, China (Grant No. 202102210111). |
Corresponding Authors:
Zhenkun Wu
E-mail: wuzk1121@henu.edu.cn
|
Cite this article:
Yagang Zhang(张亚港), Yuheng Pei(裴宇恒), Yibo Yuan(袁一博), Feng Wen(问峰), Yuzong Gu(顾玉宗), and Zhenkun Wu(吴振坤) Propagations of Fresnel diffraction accelerating beam in Schrödinger equation with nonlocal nonlinearity 2021 Chin. Phys. B 30 114209
|
[1] Siviloglou G A and Christodoulides D N 2007 Opt. Lett. 32 979 [2] Siviloglou G A, Broky J, Dogariu A and Christodoulides D N 2007 Phys. Rev. Lett. 99 213901 [3] Broky J, Siviloglou G A, Dogariu A and Christodoulides D N 2008 Opt. Express 16 12880 [4] Ellenbogen T, Voloch-Bloch N, GananyPadowicz A and Arie A 2009 Nat. Photon. 3 395 [5] Chong A, Renninger W H, Christodoulides D N and Wise F W 2010 Nat. Photon. 4 103 [6] Zhou J X, Liu Y H, Ke Y G, Luo H L and Wen S C 2015 Opt. Lett. 40 3193 [7] Wu W J, Zhang W S, Chen S Z, Ling X H, Shu W X, Luo H L, Wen S C and Yin X B 2018 Opt. Express 26 23705 [8] Xu D Y, He S S, Zhou J X, Chen S Z, Wen S C and Luo H L 2020 Opt. Lett. 45 6867 [9] Berry M V and Balazs N L 1979 Am. J. Phys. 47 264 [10] Lin C L, Hsiung T C and Huang M J 2008 Europhys. Lett. 83 30002 [11] Durnin J 1987 J. Opt. Soc. Am. A 4 651 [12] Bouchal Z 2003 Czech. J. Phys. 53 537 [13] Wu Z K and Gu Y Z 2019 Commun. Theor. Phys. 71 741 [14] Chen Y H, Wu L X, Mo Z X, Wu L C and Deng D M 2021 Chin. Phys. B 30 014204 [15] He S L, Malomed B A, Mihalache D, Peng X, Yu X, He Y J and Deng D M 2021 Chaos, Solitons and Fractals 142 110470 [16] Liu X Y, Sun C and Deng D M 2021 Chin. Phys. B 30 024202 [17] Chen B, Chen C D, Peng X, Peng Y L, Zhou M L, Deng D M and Guo H 2016 J. Opt. 18 055504 [18] Zhang X H, Wang F L, Bai L Y, Lou C B and Liang Y 2020 Chin. Phys. B 29 064204 [19] Zhu Y F and Geng T 2020 Acta Phys. Sin. 69 014205 (in Chinese) [20] Chen X P, Xu C J, Yang Q, Luo Z M, Li X X and Deng D M 2020 Chin. Phys. B 29 064202 [21] Zhang P, Hu Y, Li T, Cannan D, Yin X, Morandotti R, Chen Z and Zhang X 2012 Phys. Rev. Lett. 109 193901 [22] Kaminer I, Segev M and Christodoulides D N 2011 Phys. Rev. Lett. 106 213903 [23] Lotti A, Faccio D, Couairon A, Papazoglou D G, Panagiotopoulos P, Abdollahpour D and Tzortzakis S 2011 Phys. Rev. A 84 021807 [24] Panagiotopoulos P, Abdollahpour D, Lotti A, Couairon A, Faccio D, Papazoglou D G and Tzortzakis S 2012 Phys. Rev. A 86 013842 [25] Efremidis N K, Paltoglou V and von Klitzing W 2013 Phys. Rev. A 87 043637 [26] Zhuang F, Shen J, Du X and Zhao D 2012 Opt. Lett. 37 3054 [27] Ru J M, Wu Z K, Zhang Y G, Wen F and Gu Y Z 2020 Front. Phys. 15 52503 [28] Zhuang F, Du X, Ye Y and Zhao D 2012 Opt. Lett. 37 1871 [29] Kaminer I, Nemirovsky J, Makris K G and Segev M 2013 Opt. Express 21 8886 [30] Kong Q, Wang Q, Bang O and Krolikowski W 2010 Phys. Rev. A 82 013826 [31] Hu W, Zhang T and Guo Q 2006 Appl. Phys. Lett. 89 071111 [32] Bekenstein R and Segev M 2011 Opt. Express 19 23706 [33] Wu Z K, Wang Z P, Guo H and Gu Y Z 2017 Opt. Express 25 30468 [34] Zhou G Q, Chen R P and Ru G Y 2014 Laser Phys. Lett. 11 105001 [35] Bekenstein R, Schley R, Mutzafi M, Rotschild C and Segev M 2015 Nat. Phys. 11 872 [36] Peccianti M, Conti C, Assanto G, De Luca A and Umeton C 2004 Nature 432 733 [37] Rotschild C, Alfassi B, Cohen O and Segev M 2006 Nat. Phys. 2 769 [38] Wu Z K, Li P, Zhang Y B, Guo H and Gu Y Z 2019 J. Opt. 21 105602 [39] Xu X M and Taha T 2003 J. Math. Model. Algorithms 2 185 [40] Muslu G M and Erbay H A 2005 Math. Comput. Simulat. 67 581 [41] Zhang Y Q, Belić M R, Zheng H B, Wu Z K, Li Y Y, Lu K Q and Zhang Y P 2013 Europhys. Lett. 104 34007 [42] Zhang Y Q, Belić M R, Zheng H B, Chen H X, Li C B, Li Y Y and Zhang Y P 2014 Opt. Express 22 7160 [43] Zhang Y Q, Belić M R, Wu Z K, Zheng H B, Lu K Q, Li Y Y and Zhang Y P 2013 Opt. Lett. 38 4585 [44] Zhang Y Q, Liu X, Belić M R, Zhong W P, Zhang Y P and Xiao M 2015 Phys. Rev. Lett. 115 180403 [45] Wu Z K, Zhang Y G, Ru J M and Gu Y Z 2020 Results Phys. 16 103008 [46] Zhang Y G, Wu Z K, Ru J M, Wen F and Gu Y Z 2020 J. Opt. Soc. A B 37 3414 [47] Eichelkraut T J, Siviloglou G A, Besieris I M and Christodoulides D N 2010 Opt. Lett. 35 3655 [48] Wu Z K, Li P and Gu Y Z 2016 Front. Phys. 12 124203 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|