Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 014401    DOI: 10.1088/1674-1056/ac6b29
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Heat transport properties within living biological tissues with temperature-dependent thermal properties

Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋)
Department of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
Abstract  Understanding of the heat transport within living biological tissues is crucial to effective heat treatments. The heat transport properties of living biological tissues with temperature-dependent properties are explored in this paper. Taking into account of variable physical properties, the governing equation of temperature is first derived in the context of the dual-phase-lags model (DPL). An effective method, according to the Laplace transform and a linearization technique, is then employed to solve this nonlinear governing equation. The temperature distribution of a biological tissue exposed to a pulsed heat flux on its exterior boundary, which frequently happens in various heat treatments, is predicted and analyzed. The results state that a lower temperature can be predicted when temperature dependence is considered in the heating process. The contributions of key thermal parameters are different and dependent on the ratio of phase lag and the amplitude of the exterior pulsed heat flux.
Keywords:  bio-heat transfer      biological tissue      temperature dependence      analytical procedure  
Received:  11 March 2022      Revised:  05 April 2022      Accepted manuscript online:  28 April 2022
PACS:  44.10.+i (Heat conduction)  
  87.55.dh (Tissue response)  
Fund: Project supported by the National Science Foundation of China (Grant Nos. 51676086 and 51575247).
Corresponding Authors:  Ying-Ze Wang     E-mail:  wyz3701320@ujs.edu.cn

Cite this article: 

Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋) Heat transport properties within living biological tissues with temperature-dependent thermal properties 2023 Chin. Phys. B 32 014401

[1] Liu K C and Chen T M 2021 J. Therm. Biol. 98 102907
[2] Anderozzi A, Brunese L, Iasiello M and Tucci C 2019 Ann. Biomed. Eng. 47 676
[3] Matrin N A and Falder S 2017 Burn 43 1624
[4] Sahoo N, Ghosh S, Narasimhan A and Das S K 2014 Int. J. Therm. Sci. 76 208
[5] Xu F, Lu T J and Seffen K A 2008 J. Mech. Phys. Solids 56 1852
[6] Xu F, Seffen K A and Lu T J 2008 Int. J. Heat Mass Tran. 51 2237
[7] Pennes H H 1948 J. Appl. Physiol. 1 93
[8] Roemer R B, Oleson J R and Cetas T C 1985 American Journal of Physiology 249 R153
[9] Mitra K, Kumar S, Vedavarz A and Moallemi M K 1995 J. Heat Trans-T ASME 117 568
[10] Cattaneo C 1958 Compte Rendus 247 431
[11] Vernotte P 1958 Compte Rendus 246 3154
[12] Tzou T Y 1995 J. Heat Trans. T. ASME 117 8
[13] Zhang Y W 2009 Int. J. Heat Mass Tran. 52 4829
[14] Lin S M and Li C Y 2016 Int. J. Therm. Sci. 110 146
[15] Liu K C 2015 Int. J. Heat. Mass Tran. 81 347
[16] Liu K C, Wang Y and Chen Y 2010 Int. J. Therm. Sci. 49 1138
[17] Liu J, Chen X and Xu L L 1999 IEEE T. Bio-Med. Eng. 46 420
[18] Dutta J and Kundu B 2018 Heat Mass Transfer 54 3199
[19] Liu K C and Chen Y S 2016 Int. J. Therm. Sci. 103 1
[20] Liu K C and Chen H T 2015 Int. Commun. Heat Mass 65 31
[21] Zhang Z W, Wang H and Qin Q H 2014 J. Mech. Med. Biol. 14 1450060
[22] Kumar D, Singh S, Sharma N and Rai K N 2018 Int. J. Therm. Sci. 133 320
[23] Arefmanesh A, Arani A A A and Emamifar A 2020 Int. Commun. Heat Mass 115 104596
[24] Wang Y Z, Li M J and Liu D 2021 Eur. J. Mech. A-Solid 86 104173
[25] Guntur S R, Lee K I, Paeng D G, Coleman A J and Choi M J 2013 Ultrasound Med. Biol. 39 1771
[26] Guntur S R and Choi M J 2020 Ultrasound Med. Biol. 46 1001
[27] Fu J W, Chen Z T and Qian L F 2015 Compos. Struct. 131 139
[28] Balla M 1991 Acta Mech. 89 73
[29] Wang Y Z, Zhang X B and Song X N 2012 Acta Mech. 223 735
[30] Liang W, Huang S, Tan W S and Wang Y Z 2019 Mech. Adv. Mater. Struct. 26 350
[31] Askarizadeh H and Ahmadikia H 2014 Heat Mass Transfer 50 1673
[32] Askarizadeh H and Ahmadikia H 2015 Appl. Math. Model. 39 3704
[30] Hobiny A D and Abbas I A 2020 J. Therm. Stresses 43 1
[34] Wang Y Z, Zan C, Liu D and Zhou J Z 2019 Eur. J. Mech. A-Solid 76 346
[1] Temperature dependence of spin pumping in YIG/NiOx/W multilayer
Lijun Ni(倪丽君), Wenqiang Wang(王文强), Lichuan Jin(金立川), Jiandong Ye(叶建东), Hehe Gong(巩贺贺), Xiang Zhan(战翔), Zhendong Chen(陈振东), Longlong Zhang(张龙龙), Xingze Dai(代兴泽), Yao Li(黎遥), Rong Zhang(张荣), Yi Yang(杨燚), Huaiwu Zhang(张怀武), Ronghua Liu(刘荣华), Lina Chen(陈丽娜), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(12): 128504.
[2] Temperature-switching logic in MoS2 single transistors
Xiaozhang Chen(陈孝章), Lehua Gu(顾乐华), Lan Liu(刘岚), Huawei Chen(陈华威), Jingyu Li(栗敬俣), Chunsen Liu(刘春森), Peng Zhou(周鹏). Chin. Phys. B, 2020, 29(9): 097201.
[3] Temperature dependence of mode coupling effect in piezoelectric vibrator made of [001]c-poled Mn-doped 0.24PIN-0.46PMN-0.30PT ternary single crystals with high electromechanical coupling factor
Nai-Xing Huang(黄乃兴), En-Wei Sun(孙恩伟), Rui Zhang(张锐), Bin Yang(杨彬), Jian Liu(刘俭), Tian-Quan Lü(吕天全), Wen-Wu Cao(曹文武). Chin. Phys. B, 2020, 29(7): 075201.
[4] Noise temperature distribution of superconducting hot electron bolometer mixers
Kang-Min Zhou(周康敏), Wei Miao(缪巍), Yue Geng(耿悦), Yan Delorme, Wen Zhang(张文), Yuan Ren(任远), Kun Zhang(张坤), Sheng-Cai Shi(史生才). Chin. Phys. B, 2020, 29(5): 058505.
[5] Anomalous temperature dependence of photoluminescence spectra from InAs/GaAs quantum dots grown by formation-dissolution-regrowth method
Guan-Qing Yang(杨冠卿), Shi-Zhu Zhang(张世著), Bo Xu(徐波), Yong-Hai Chen(陈涌海), Zhan-Guo Wang(王占国). Chin. Phys. B, 2017, 26(6): 068103.
[6] Extraction of temperature dependences of small-signal model parameters in SiGe HBT HICUM model
Ya-Bin Sun(孙亚宾), Jun Fu(付军), Yu-Dong Wang(王玉东), Wei Zhou(周卫), Wei Zhang(张伟), and Zhi-Hong Liu(刘志弘). Chin. Phys. B, 2016, 25(4): 048501.
[7] Effect of combined platinum and electron on the temperature dependence of forward voltage in fast recovery diode
Jia Yun-Peng (贾云鹏), Zhao Bao (赵豹), Yang Fei (杨霏), Wu Yu (吴郁), Zhou Xuan (周璇), Li Zhe (李哲), Tan Jian (谭健). Chin. Phys. B, 2015, 24(12): 126104.
[8] Schottky forward current transport mechanisms in AlGaN/GaN HEMTs over a wide temperature range
Wu Mei (武玫), Zheng Da-Yong (郑大勇), Wang Yuan (王媛), Chen Wei-Wei (陈伟伟), Zhang Kai (张凯), Ma Xiao-Hua (马晓华), Zhang Jin-Cheng (张进成), Hao Yue (郝跃). Chin. Phys. B, 2014, 23(9): 097307.
[9] Temperature dependence of the photothermal laser cooling efficiency for a micro-cantilever
Ding Li-Ping (丁丽萍), Mao Tian-Hua (毛添华), Fu Hao (付号), Cao Geng-Yu (曹更玉). Chin. Phys. B, 2014, 23(10): 107801.
[10] Temperature dependence of single event transient in 90-nm CMOS dual-well and triple-well NMOSFETs
Li Da-Wei (李达维), Qin Jun-Rui (秦军瑞), Chen Shu-Ming (陈书明). Chin. Phys. B, 2013, 22(2): 029401.
[11] Parasitic bipolar amplification in single event transient and its temperature dependence
Liu Zheng (刘征), Chen Shu-Ming (陈书明), Chen Jian-Jun (陈建军), Qin Jun-Rui (秦军瑞), Liu Rong-Rong (刘蓉容). Chin. Phys. B, 2012, 21(9): 099401.
[12] Temperature and drain bias dependence of single event transient in 25-nm FinFET technology
Qin Jun-Rui (秦军瑞), Chen Shu-Ming (陈书明), Li Da-Wei (李达维), Liang Bin (梁斌), Liu Bi-Wei (刘必慰 ). Chin. Phys. B, 2012, 21(8): 089401.
[13] Permittivity and its temperature dependence in hexagonal structure BN dominated by the local electric field
Zhang Ting(张婷), Wu Meng-Qiang(吴孟强), Zhang Shu-Ren(张树人), Xiong Jie(熊杰), Wang Jin-Ming(王金明), Zhang Da-Hai(张大海), He Feng-Mei(何凤梅), and Li Zhong-Ping(李仲平) . Chin. Phys. B, 2012, 21(7): 077701.
[14] Temperature dependence of birefringence in olarization-maintaining photonic crystal fibres
Zhao Hong(赵红), Chen Meng(陈檬), and Li Gang(李港) . Chin. Phys. B, 2012, 21(6): 068404.
[15] Temperature-dependent characteristics of 4H–SiC junction barrier Schottky diodes
Chen Feng-Ping(陈丰平), Zhang Yu-Ming(张玉明), Zhang Yi-Men(张义门), Tang Xiao-Yan(汤晓燕), Wang Yue-Hu(王悦湖), and Chen Wen-Hao(陈文豪) . Chin. Phys. B, 2012, 21(3): 037304.
No Suggested Reading articles found!