Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 067102    DOI: 10.1088/1674-1056/ac422b
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Polarization-dependent ultrafast carrier dynamics in GaAs with anisotropic response

Ya-Chao Li(李亚超)1,2, Chao Ge(葛超)1,2, Peng Wang(汪鹏)1,2, Shuang Liu(刘爽)1,2, Xiao-Ran Ma(麻晓冉)1,2, Bing Wang(王冰)1,2, Hai-Ying Song(宋海英)1,2,†, and Shi-Bing Liu(刘世炳)1,2,‡
1 Strong-field and Ultrafast Photonics Laboratory, Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China;
2 Strong-field and Ultrafast Photonics Laboratory, Beijing Engineering Research Center of Laser Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
Abstract  The transient dynamics of anisotropic properties of GaAs was systematically studied by polarization-dependent ultrafast time-resolved transient absorption. Our findings revealed that the anisotropy of reflectivity was enhanced in both pump-induced and probe-induced processes, suggesting an extraordinary resonance absorption of photon-phonon coupling (PPC) with intrinsic anisotropic characteristic in carrier relaxation, regardless of the concrete crystallinity and orientation of GaAs sample. The results, delivering in-depth cognition about the polarization-dependent ultrafast carrier dynamics, also proved the paramount importance of interaction between polarized laser and semiconductor.
Keywords:  ultrafast pump-probe      polarization-dependence      photon-phonon coupling      GaAs  
Received:  04 November 2021      Revised:  07 December 2021      Accepted manuscript online:  11 December 2021
PACS:  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
  78.47.J- (Ultrafast spectroscopy (<1 psec))  
  82.53.-k (Femtochemistry)  
  78.47.js (Free polarization decay)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51875006 and 51705009).
Corresponding Authors:  Hai-Ying Song, Shi-Bing Liu     E-mail:  hysong@bjut.edu.cn;sbliu@bjut.edu.cn

Cite this article: 

Ya-Chao Li(李亚超), Chao Ge(葛超), Peng Wang(汪鹏), Shuang Liu(刘爽), Xiao-Ran Ma(麻晓冉), Bing Wang(王冰), Hai-Ying Song(宋海英), and Shi-Bing Liu(刘世炳) Polarization-dependent ultrafast carrier dynamics in GaAs with anisotropic response 2022 Chin. Phys. B 31 067102

[1] Shu C C, Dong D, Petersen I R and Henriksen N E 2017 Phys. Rev. A 95 033809
[2] Bergner K, Flamm D, Jenne M, Kumkar M, Tünnermann A and Nolte S 2018 Opt. Express 26 2873
[3] Shugaev M V, Wu C, Armbruster O, Naghilou A, Brouwer N, Ivanov D S, Derrien T J Y, Bulgakova N M, Kautek W, Rethfeld B and Zhigilei L V 2016 MRS Bull. 41 960
[4] Mochán W L and Récamier J 1989 Phys. Rev. Lett. 63 2100
[5] Knapen S, Lin T, Pyle M and Zurek K M 2018 Phys. Lett. B 785 386
[6] Zhang C, Ouyang H, Miao R, Sui Y, Hao H, Tang Y, You J, Zheng X, Xu Z, Cheng X and Jiang T 2019 Adv. Opt. Mater. 7 1900631
[7] Miao R, Hu Y, Ouyang H, Tang Y, Zhang C, You J, Zheng X, Xu Z, Cheng X and Jiang T 2019 Nanoscale 11 14598
[8] López-Flores V, Arabski J, Stamm C, HaltéV, Pontius N, Beaurepaire E and Boeglin C 2012 Phys. Rev. B 86 014424
[9] Brixner T, García de Abajo F J, Schneider J and Pfeiffer W 2005 Phys. Rev. Lett. 95 093901
[10] Mankowsky R, von Hoegen A, First M and Cavalleri A 2017 Phys. Rev. Lett. 118 197601
[11] Tian N, Yang Y, Liu D, Liu X, Tan P H, Zhang D, Chang K, Li H, Zhao M, Li J R, Tang X, Zhang D, Zhang Z, Xiao W, Yan H and Zhang Y 2018 ACS Nano 12 1712
[12] Liu Y, Gu Q, Peng Y, Qi S, Zhang N, Zhang Y, Ma X, Zhu R, Tong L, Feng J, Liu Z and Chen J H 2018 Adv. Mater. 30 1706402
[13] Song Q, Pan X, Wang H, Zhang K, Tan Q, Li P, Wan Y, Wang Y, Xu X, Lin M, Wan X, Song F and Dai L 2016 Sci. Rep. 6 29254
[14] Kato K, Ito K and Hoshino T 2020 J. Phys. Chem. Lett. 11 6201
[15] Niu S, Joe G, Zhao H, Zhou Y, Orvis T, Huyan H, Salman J, Mahalingam K, Urwin B, Wu J, Liu Y, Tiwald T E, Cronin S B, Howe B M, Mecklenburg M, Haiges R, Singh D J, Wang H, Kats M A and Ravichandran J 2018 Nat. Photonics 12 392
[16] Tung I C, Krishnamoorthy A, Sadasivam S, Zhou H, Zhang Q, Seyler K L, Clark G, Mannebach E M, Nyby C, Ernst F, Zhu D, Glownia J M, Kozina M E, Song S, Nelson S, Kumazoe H, Shimojo F, Kalia R K, Vashishta P, Darancet P, Heinz T F, Nakano A, Xu X, Lindenberg A M and Wen H 2019 Nat. Photonics 13 425
[17] Han Z J, Liu H, Li Q, Zhou D and Lv J 2021 Chin. Phys. Lett. 38 046201
[18] Huang D M, Zhang J Y, Wang J H, Wei W Q, Wang Z H, Wang T and Zhang J J 2021 Chin. Phys. Lett. 38 068101
[19] Nie X C, Song H Y, Zhang X, Gu P, Liu S B, Li F, Meng J Q, Duan Y X and Liu H Y 2018 New J. Phys. 20 033015
[20] You Y Y, Jiang T R and Lai T S 2020 Chin. Phys. Lett. 37 087803
[21] Alzeidan A, Claro M S and Quivy A A 2019 J. Appl. Phys. 126 224506
[22] Geum D M, Kim S, Kim S K, Kang S, Kyhm J, Song J, Choi W J and Yoon E 2019 Sci. Rep. 9 18661
[23] Aziz M, Xie C, Pusino V, Khalid A, Steer M, Thayne I G and Cumming D R S 2017 Appl. Phys. Lett. 111 102102
[24] Mahajan S S, Sharma A, Jain D, Saini H, Yadav B, Naik A A and Jain A 2018 Vacuum 152 128
[25] Chen H, Lee S M, Montenegro A, Kang D, Gai B, Lim H, Dutta C, He W, Lee M L, Benderskii A and Yoon J 2018 ACS Photonics 5 4289
[26] Zhao B, Tang X S, Huo W X, Jiang Y, Ma Z G, Wang L, Wang W X, Chen H and Jia H Q 2018 Solar Energy 174 703
[27] Vaisman M, Jain N, Li Q, Lau K M, Makoutz E, Saenz T, McMahon W E, Tamboli A C and Warren E L 2018 IEEE J. Photovolt. 8 1635
[28] Smith G O, Mayer E J, Kuhl J and Ploog K 1994 Solid State Commun. 92 325
[29] Alexandrou A, Berger V and Hulin D 1995 Phys. Rev. B 52 4654
[30] Quochi F, Dinu M, Pfeiffer L N, West K W, Kerbage C, Windeler R S and Eggleton B J 2003 Phys. Rev. B 67 235323
[31] Hebling J, Hoffmann M C, Hwang H Y, Yeh K L and Nelson K A 2010 Phys. Rev. B 81 035201
[32] Othonos A 1998 J. Appl. Phys. 83 1789
[33] Shank C V, Auston D H, Ippen E P and Teschke O 1978 Solid State Commun. 26 567
[34] Auston D H, McAfee S, Shank C V, Ippen E P and Teschke O 1978 Solid State Electron. 21 147
[35] Guo Z, Wan Y, Yang M, Snaider J, Zhu K and Huang L 2017 Science 356 59
[36] Wei K, Zheng X, Cheng X, Shen C and Jiang T 2016 Adv. Opt. Mater. 4 1993
[37] Ruzicka B A, Wang R, Lohrman J, Ren S and Zhao H 2012 Phys. Rev. B 86 205417
[38] Zhang X, Song H Y, Nie X C, Liu S B, Wang Y, Jiang C Y, Zhao S Z, Chen G, Meng J Q, Duan Y X and Liu H Y 2019 Phys. Rev. B 99 125141
[39] Colwell P J and Klein M V 1970 Solid State Commun. 8 2095
[40] Brodsky M H 1983 Light Scattering in Solids I (Berlin, Heidelberg: Springer), pp. 205-251
[41] Pérez-Rodriguez F, Récamier J and Mochán W L 1998 Surface Science 414 93
[42] Ziman J M 1972 Principles of the Theory of Solids (Cambridge: Cambridge University Press)
[43] Mahan G and Obermair G 1969 Phys. Rev. 183 834
[44] Dub P 1981 Phys. Status Solidi (b) 104 109
[45] Mochán W L and Barrera R G 1984 J. Phys. Colloques 45 C5-207
[1] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[2] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[3] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[4] Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation
Zi-Heng Wang(王自衡), Yi-Jun Zhang(张益军), Shi-Man Li(李诗曼), Shan Li(李姗), Jing-Jing Zhan(詹晶晶), Yun-Sheng Qian(钱芸生), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Gang-Cheng Jiao(焦岗成), and Yu-Gang Zeng(曾玉刚). Chin. Phys. B, 2022, 31(9): 098505.
[5] Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs
Shurui Cao(曹书睿), Ruize Feng(封瑞泽), Bo Wang(王博), Tong Liu(刘桐), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058502.
[6] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[7] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[8] Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨). Chin. Phys. B, 2022, 31(3): 034208.
[9] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[10] Terahertz generation and detection of LT-GaAs thin film photoconductive antennas excited by lasers of different wavelengths
Xin Liu(刘欣), Qing-Hao Meng(孟庆昊), Jing Ding(丁晶), Zhi-Chen Bai(白志晨), Jia-Hui Wang(王佳慧), Cong Zhang(张聪), Bo Su(苏波), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2022, 31(2): 028701.
[11] Impact of symmetric gate-recess length on the DC and RF characteristics of InP HEMTs
Ruize Feng(封瑞泽), Bo Wang(王博), Shurui Cao(曹书睿), Tong Liu(刘桐), Yongbo Su(苏永波), Wuchang Ding(丁武昌), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018505.
[12] Growth of high-crystallinity uniform GaAs nanowire arrays by molecular beam epitaxy
Yu-Bin Kang(亢玉彬), Feng-Yuan Lin(林逢源), Ke-Xue Li(李科学), Ji-Long Tang(唐吉龙), Xiao-Bing Hou(侯效兵), Deng-Kui Wang(王登魁), Xuan Fang(方铉), Dan Fang(房丹), Xin-Wei Wang(王新伟), and Zhi-Peng Wei(魏志鹏). Chin. Phys. B, 2021, 30(7): 078102.
[13] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[14] Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots
Guo-Feng Wu(武国峰), Jun Wang(王俊), Wei-Rong Chen(陈维荣), Li-Na Zhu(祝丽娜), Yuan-Qing Yang(杨苑青), Jia-Chen Li(李家琛), Chun-Yang Xiao(肖春阳), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(11): 110201.
[15] Thermal stress reduction of GaAs epitaxial growth on V-groove patterned Si substrates
Ze-Yuan Yang(杨泽园), Jun Wang(王俊), Guo-Feng Wu(武国峰), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(1): 016102.
No Suggested Reading articles found!