CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Polarization-dependent ultrafast carrier dynamics in GaAs with anisotropic response |
Ya-Chao Li(李亚超)1,2, Chao Ge(葛超)1,2, Peng Wang(汪鹏)1,2, Shuang Liu(刘爽)1,2, Xiao-Ran Ma(麻晓冉)1,2, Bing Wang(王冰)1,2, Hai-Ying Song(宋海英)1,2,†, and Shi-Bing Liu(刘世炳)1,2,‡ |
1 Strong-field and Ultrafast Photonics Laboratory, Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; 2 Strong-field and Ultrafast Photonics Laboratory, Beijing Engineering Research Center of Laser Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China |
|
|
Abstract The transient dynamics of anisotropic properties of GaAs was systematically studied by polarization-dependent ultrafast time-resolved transient absorption. Our findings revealed that the anisotropy of reflectivity was enhanced in both pump-induced and probe-induced processes, suggesting an extraordinary resonance absorption of photon-phonon coupling (PPC) with intrinsic anisotropic characteristic in carrier relaxation, regardless of the concrete crystallinity and orientation of GaAs sample. The results, delivering in-depth cognition about the polarization-dependent ultrafast carrier dynamics, also proved the paramount importance of interaction between polarized laser and semiconductor.
|
Received: 04 November 2021
Revised: 07 December 2021
Accepted manuscript online: 11 December 2021
|
PACS:
|
71.36.+c
|
(Polaritons (including photon-phonon and photon-magnon interactions))
|
|
78.47.J-
|
(Ultrafast spectroscopy (<1 psec))
|
|
82.53.-k
|
(Femtochemistry)
|
|
78.47.js
|
(Free polarization decay)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51875006 and 51705009). |
Corresponding Authors:
Hai-Ying Song, Shi-Bing Liu
E-mail: hysong@bjut.edu.cn;sbliu@bjut.edu.cn
|
Cite this article:
Ya-Chao Li(李亚超), Chao Ge(葛超), Peng Wang(汪鹏), Shuang Liu(刘爽), Xiao-Ran Ma(麻晓冉), Bing Wang(王冰), Hai-Ying Song(宋海英), and Shi-Bing Liu(刘世炳) Polarization-dependent ultrafast carrier dynamics in GaAs with anisotropic response 2022 Chin. Phys. B 31 067102
|
[1] Shu C C, Dong D, Petersen I R and Henriksen N E 2017 Phys. Rev. A 95 033809 [2] Bergner K, Flamm D, Jenne M, Kumkar M, Tünnermann A and Nolte S 2018 Opt. Express 26 2873 [3] Shugaev M V, Wu C, Armbruster O, Naghilou A, Brouwer N, Ivanov D S, Derrien T J Y, Bulgakova N M, Kautek W, Rethfeld B and Zhigilei L V 2016 MRS Bull. 41 960 [4] Mochán W L and Récamier J 1989 Phys. Rev. Lett. 63 2100 [5] Knapen S, Lin T, Pyle M and Zurek K M 2018 Phys. Lett. B 785 386 [6] Zhang C, Ouyang H, Miao R, Sui Y, Hao H, Tang Y, You J, Zheng X, Xu Z, Cheng X and Jiang T 2019 Adv. Opt. Mater. 7 1900631 [7] Miao R, Hu Y, Ouyang H, Tang Y, Zhang C, You J, Zheng X, Xu Z, Cheng X and Jiang T 2019 Nanoscale 11 14598 [8] López-Flores V, Arabski J, Stamm C, HaltéV, Pontius N, Beaurepaire E and Boeglin C 2012 Phys. Rev. B 86 014424 [9] Brixner T, García de Abajo F J, Schneider J and Pfeiffer W 2005 Phys. Rev. Lett. 95 093901 [10] Mankowsky R, von Hoegen A, First M and Cavalleri A 2017 Phys. Rev. Lett. 118 197601 [11] Tian N, Yang Y, Liu D, Liu X, Tan P H, Zhang D, Chang K, Li H, Zhao M, Li J R, Tang X, Zhang D, Zhang Z, Xiao W, Yan H and Zhang Y 2018 ACS Nano 12 1712 [12] Liu Y, Gu Q, Peng Y, Qi S, Zhang N, Zhang Y, Ma X, Zhu R, Tong L, Feng J, Liu Z and Chen J H 2018 Adv. Mater. 30 1706402 [13] Song Q, Pan X, Wang H, Zhang K, Tan Q, Li P, Wan Y, Wang Y, Xu X, Lin M, Wan X, Song F and Dai L 2016 Sci. Rep. 6 29254 [14] Kato K, Ito K and Hoshino T 2020 J. Phys. Chem. Lett. 11 6201 [15] Niu S, Joe G, Zhao H, Zhou Y, Orvis T, Huyan H, Salman J, Mahalingam K, Urwin B, Wu J, Liu Y, Tiwald T E, Cronin S B, Howe B M, Mecklenburg M, Haiges R, Singh D J, Wang H, Kats M A and Ravichandran J 2018 Nat. Photonics 12 392 [16] Tung I C, Krishnamoorthy A, Sadasivam S, Zhou H, Zhang Q, Seyler K L, Clark G, Mannebach E M, Nyby C, Ernst F, Zhu D, Glownia J M, Kozina M E, Song S, Nelson S, Kumazoe H, Shimojo F, Kalia R K, Vashishta P, Darancet P, Heinz T F, Nakano A, Xu X, Lindenberg A M and Wen H 2019 Nat. Photonics 13 425 [17] Han Z J, Liu H, Li Q, Zhou D and Lv J 2021 Chin. Phys. Lett. 38 046201 [18] Huang D M, Zhang J Y, Wang J H, Wei W Q, Wang Z H, Wang T and Zhang J J 2021 Chin. Phys. Lett. 38 068101 [19] Nie X C, Song H Y, Zhang X, Gu P, Liu S B, Li F, Meng J Q, Duan Y X and Liu H Y 2018 New J. Phys. 20 033015 [20] You Y Y, Jiang T R and Lai T S 2020 Chin. Phys. Lett. 37 087803 [21] Alzeidan A, Claro M S and Quivy A A 2019 J. Appl. Phys. 126 224506 [22] Geum D M, Kim S, Kim S K, Kang S, Kyhm J, Song J, Choi W J and Yoon E 2019 Sci. Rep. 9 18661 [23] Aziz M, Xie C, Pusino V, Khalid A, Steer M, Thayne I G and Cumming D R S 2017 Appl. Phys. Lett. 111 102102 [24] Mahajan S S, Sharma A, Jain D, Saini H, Yadav B, Naik A A and Jain A 2018 Vacuum 152 128 [25] Chen H, Lee S M, Montenegro A, Kang D, Gai B, Lim H, Dutta C, He W, Lee M L, Benderskii A and Yoon J 2018 ACS Photonics 5 4289 [26] Zhao B, Tang X S, Huo W X, Jiang Y, Ma Z G, Wang L, Wang W X, Chen H and Jia H Q 2018 Solar Energy 174 703 [27] Vaisman M, Jain N, Li Q, Lau K M, Makoutz E, Saenz T, McMahon W E, Tamboli A C and Warren E L 2018 IEEE J. Photovolt. 8 1635 [28] Smith G O, Mayer E J, Kuhl J and Ploog K 1994 Solid State Commun. 92 325 [29] Alexandrou A, Berger V and Hulin D 1995 Phys. Rev. B 52 4654 [30] Quochi F, Dinu M, Pfeiffer L N, West K W, Kerbage C, Windeler R S and Eggleton B J 2003 Phys. Rev. B 67 235323 [31] Hebling J, Hoffmann M C, Hwang H Y, Yeh K L and Nelson K A 2010 Phys. Rev. B 81 035201 [32] Othonos A 1998 J. Appl. Phys. 83 1789 [33] Shank C V, Auston D H, Ippen E P and Teschke O 1978 Solid State Commun. 26 567 [34] Auston D H, McAfee S, Shank C V, Ippen E P and Teschke O 1978 Solid State Electron. 21 147 [35] Guo Z, Wan Y, Yang M, Snaider J, Zhu K and Huang L 2017 Science 356 59 [36] Wei K, Zheng X, Cheng X, Shen C and Jiang T 2016 Adv. Opt. Mater. 4 1993 [37] Ruzicka B A, Wang R, Lohrman J, Ren S and Zhao H 2012 Phys. Rev. B 86 205417 [38] Zhang X, Song H Y, Nie X C, Liu S B, Wang Y, Jiang C Y, Zhao S Z, Chen G, Meng J Q, Duan Y X and Liu H Y 2019 Phys. Rev. B 99 125141 [39] Colwell P J and Klein M V 1970 Solid State Commun. 8 2095 [40] Brodsky M H 1983 Light Scattering in Solids I (Berlin, Heidelberg: Springer), pp. 205-251 [41] Pérez-Rodriguez F, Récamier J and Mochán W L 1998 Surface Science 414 93 [42] Ziman J M 1972 Principles of the Theory of Solids (Cambridge: Cambridge University Press) [43] Mahan G and Obermair G 1969 Phys. Rev. 183 834 [44] Dub P 1981 Phys. Status Solidi (b) 104 109 [45] Mochán W L and Barrera R G 1984 J. Phys. Colloques 45 C5-207 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|