Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 078101    DOI: 10.1088/1674-1056/abf133

Super deformability and thermoelectricity of bulk γ-InSe single crystals

Bin Zhang(张斌)1, Hong Wu(吴宏)2, Kunling Peng(彭坤岭)2, Xingchen Shen(沈星辰)2, Xiangnan Gong(公祥南)1, Sikang Zheng(郑思康)2, Xu Lu(卢旭)2, Guoyu Wang(王国玉)4, and Xiaoyuan Zhou(周小元)1,2,†
1 Analytical and Testing Center of Chongqing University, Chongqing 401331, China;
2 Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China;
3 Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China;
4 University of Chinese Academy of Sciences, Beijing 100044, China
Abstract  Indium selenide, a Ⅲ-V group semiconductor with layered structure, attracts intense attention in various photoelectric applications, due to its outstanding properties. Here, we report super deformability and thermoelectricity of γ-InSe single crystals grown by modified Bridgeman method. The crystal structure of InSe is studied systematically by transmission electron microscopy methods combined with x-ray diffraction and Raman spectroscopy. The predominate phase of γ-InSe with dense stacking faults and local multiphases is directly demonstrated at atomic scale. The bulk γ-InSe crystals demonstrate surprisingly high intrinsic super deformative ability which is highly pliable with bending strains exceeding 12.5% and 264% extension by rolling. At the meantime, InSe also possesses graphite-like features which is printable, writable, and erasable. Finally, the thermoelectric properties of γ-InSe bulk single crystals are preliminary studied and thermal conductivity can be further reduced via bending-induced defects. These findings will enrich the knowledge of structural and mechanical properties' flexibility of InSe and shed lights on the intrinsic and unique mechanical properties of InSe polytypes.
Keywords:  γ-InSe single crystals      structure identification      super deformability      thermoelectric properties  
Received:  29 January 2021      Revised:  16 March 2021      Accepted manuscript online:  24 March 2021
PACS:  81.10.Fq (Growth from melts; zone melting and refining)  
  84.60.Rb (Thermoelectric, electrogasdynamic and other direct energy conversion)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674040, 11604032, 51472036, 51672270, and 11904039), the Fundamental Research Funds for the Central Universities, China (Grant No. 106112016CDJZR308808), and Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDB-SSW-SLH016).
Corresponding Authors:  Xiaoyuan Zhou     E-mail:

Cite this article: 

Bin Zhang(张斌), Hong Wu(吴宏), Kunling Peng(彭坤岭), Xingchen Shen(沈星辰), Xiangnan Gong(公祥南), Sikang Zheng(郑思康), Xu Lu(卢旭), Guoyu Wang(王国玉), and Xiaoyuan Zhou(周小元) Super deformability and thermoelectricity of bulk γ-InSe single crystals 2021 Chin. Phys. B 30 078101

[1] Wei T R, Jin M, Wang Y C, Chen H Y, Gao Z Q, Zhao K P, Qiu P F, Shan Z W, Jiang J, Li R B, Chen L D, He J and Shi X 2020 Science 369 542
[2] Han X D 2020 Science 369 509
[3] Feng W, Zheng W, Chen X S, Liu G B and Hu P A 2015 ACS Appl. Mater. Interfaces 7 26691
[4] Shubina T V, Desrat W, Moret M, Tiberj A, Briot O, Davydov V Y, Platonov A V, Semina M A and Gil B 2019 Nat. Commun. 10 3479
[5] Hung N T, Nugraha A R T and Saito R 2017 Appl. Phys. Lett. 111 092107
[6] Chen L, Yu Z G, Liang D, Li S F, Tan W C, Zhang Y W and Ang K W 2020 Nano Energy 76 105020
[7] Panella V, Carlotti G, Socino G, Giovannini L, Eddrief M, Amimer K and Sebenne C 1997 J. Phys.:Condens. Matter 9 5575
[8] Li Y H, Yu C B, Gan Y Y, Kong Y Y, Jiang P, Zou D Feng, Li P H, Yu X F, Wu R, Zhao H J, Gao C F and Li J Y 2019 Nanotechnology 30 335703
[9] Sun C, Xiang H, Xu B, Xia Y D, Yin J and Liu Z G 2016 Appl. Phys. Express 9 035203
[10] Li W B and Li J 2015 Nano Res. 8 3796
[11] Demirci S, Avazli N, Durgun E and Cahangirov S 2017 Phys. Rev. B 95 115409
[12] Mosca D H, Mattoso N, Lepienski C M, Veiga W, Mazzaro I, Etgens V H and Eddrief M 2002 J. Appl. Phys. 91 140
[13] Popovic S, Tonejc A, Grzeta-Plenkovic B, Celustka B and Trojko R 1979 J. Appl. Cryst. 12 416
[14] Han G, Chen Z G, Drennan J and Zou J 2014 Small 10 2747
[15] Čelustka B and Popovi S 1974 J. Phys. Chem. Solids 35 287
[16] Inoue S, Yoshida T and Morita T 1982 Jpn. J. Appl. Phys. 21 242
[17] Sun M J, Wang W, Zhao Q H, Gan X T, Sun Y H, Jie W Q and Wang T 2020 Cryst. Eng. Comm. 22 7864
[18] Hao Q Y, Yi H, Su H M, Wei B, Wang Z, Lao Z Z, Chai Y, Wang Z C, Jin C H, Dai J F and Zhang W J 2019 Nano Lett. 19 2634
[19] Chen Z S, Biscaras J and Shukla A 2015 Nanoscale 7 5981
[20] Grimaldi I, Gerace T, Pipta M M, Perrotta I D, Ciuchi F, Berger H, Papagno M, Castriota M and Pacilé D 2020 Solid State Commun. 311 113855
[21] Yang Z B, Jie W J, Mak C H, Lin S H, Lin H H, Yang X F, Yan F, Lau S P and Hao J H 2017 ACS Nano 11 4225
[22] Lokforman P A, Carré D, Etienne J and Bachet B 1975 Acta Cryst. B 31 1252
[23] Wang J J, Cao F F, Jiang L, Guo Y G, Hu W P and Wan L J 2009 J. Am. Chem. Soc. 131 15602
[24] Ikari T, Shigetomi S and Hashimoto K 1982 Phys. Stat. Sol. b 111 477
[25] Carlone C and Jandl S 1979 Solid State Commun. 29 31
[26] Wu L M, Shi J N, Zhou Z, Yan J H, Wang A W, Bian C, Ma J J, Ma R S, Liu H T, Chen J C, Yuan Huang, Zhou W, Bao L H, Ouyang M, Pantelides S T and Gao H J 2020 Nano Res. 13 1127
[27] Rigoult J, Rimsky A and Kuhn A 1980 Acta Cryst. B 36 916
[28] Blasi C D, Micocci G, Mongelli S and Tepore A 1982 J. Cryst. Grow. 57 482
[29] Sun Y H, Li Y W, Li T S, Biswas K, Patané A and Zhang L J 2020 Adv. Funct. Mater. 30 2001920
[30] Park K H, Jang K, Kim S, Kim H J and Son S U 2006 J. Am. Chem. Soc. 128 14780
[31] Ning J J, Xiao G J, Xiao N R, Wang L, Liu B B and Zou B 2011 J. Crys. Grow. 336 1
[32] Errandonea D, Martínez-García D, Segura A, Chevy A, Tobias G, Canadell E and Ordejon P 2006 Phys. Rev. B 73 235202
[33] Rhyee J S, Lee K H, Lee S M, Cho E, Kim S I, Lee E, Kwon Y S, Shim J H and Kotliar G 2009 Nature 459 965
[34] Cui J, Wang L, Du Z, Ying P and Deng Y 2015 J. Mater. Chem. C 3 9069
[35] Hou X, Chen S, Du Z, Liu X and Cui J 2015 RSC Adv. 5 102856
[36] Yim J H, Park H H, Jang H W, Yoo M J, Paik D S, Baek S H and Kim J S 2012 J. Electron. Mater. 41 1354
[37] Zhao L D, Lo S H, Zhang Y S, Sun H, Tan G J, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373
[38] Wu H, Lu X, Wang G Y, Peng K L, Chi H, Zhang B, Chen Y J, Li C J, Yan Y C, Guo L J, Uher C, Zhou X Y and Han X D 2018 Adv. Energy Mater. 8 1800087
[39] Peng K L, Zhang B, Wu H, Cao X L, Li A, Yang D F, Lu X, Wang G Y, Han X D, Uher C and Zhou X Y 2018 Mater. Today 21 501
[40] Chang C, Wu M H, He D S, Pei Y L, Wu C F, Wu X F, Yu H L, Zhu F Y, Wang K D, Chen Y, Huang L, Li J F, He J Q and Zhao L D 2018 Science 360 778
[41] He D S, Li Z Y and Yuan J 2015 Micron 74 47
[42] Blasi C D, Micocci G, Mongelli S, Tepore A and Zuanni F 1983 Mater. Chem. Phys. 9 55
[43] Chevy A, Kuhn A and Martin M S 1977 J. Crys. Grow. 38 118
[44] Wu M, Xie Q Y, Wu Y Z, Zheng J J, Wang W, He L, Wu W S and Lv B 2019 AIP Adv. 9 025013
[45] Mosca D H, Mattoso N, Lepienski C M, Veiga W, Mazzaro I, Etgens V H and Eddrief M 2002 J. Appl. Phys. 91 140
[46] Isik M and Gasanly N M 2020 Mat. Sci. Semicon. Proc. 107 104862
[47] Julien C, Hatzikraniotis E, Chevy A and Kambas K 1985 Mat. Res. Bull. 20 287
[48] Hu Y X, Feng W, Dai M J, Yang H H, Chen X S, Liu G B, Zhang S C and Hu P A 2018 Semicond. Sci. Technol. 33 125002
[49] Li H, Han X, Pan D, Yan X, Wang H W, Wu C M, Cheng G H, Zhang H C, Yang S, Li B K, He H T and Wang J N 2018 Cryst. Growth Des. 18 2899
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[3] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[4] Facile fabrication of highly flexible, porous PEDOT: PSS/SWCNTs films for thermoelectric applications
Fu-Wei Liu(刘福伟), Fei Zhong(钟飞), Shi-Chao Wang(王世超), Wen-He Xie(谢文合), Xue Chen(陈雪), Ya-Ge Hu(胡亚歌), Yu-Ying Ge(葛钰莹), Yuan Gao(郜源), Lei Wang(王雷), and Zi-Qi Liang(梁子骐). Chin. Phys. B, 2022, 31(2): 027303.
[5] N-type core-shell heterostructured Bi2S3@Bi nanorods/polyaniline hybrids for stretchable thermoelectric generator
Lu Yang(杨璐), Chenghao Liu(刘程浩), Yalong Wang(王亚龙), Pengcheng Zhu(朱鹏程), Yao Wang(王瑶), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(2): 028204.
[6] Energy band and charge-carrier engineering in skutterudite thermoelectric materials
Zhiyuan Liu(刘志愿), Ting Yang(杨婷), Yonggui Wang(王永贵), Ailin Xia(夏爱林), and Lianbo Ma(马连波). Chin. Phys. B, 2022, 31(10): 107303.
[7] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[8] Synthesis and thermoelectric properties of Bi-doped SnSe thin films
Jun Pang(庞军), Xi Zhang(张析), Limeng Shen(申笠蒙), Jiayin Xu(徐家胤), Ya Nie(聂娅), and Gang Xiang(向钢). Chin. Phys. B, 2021, 30(11): 116302.
[9] Low lattice thermal conductivity and high figure of merit in p-type doped K3IO
Weiqiang Wang(王巍强), Zhenhong Dai(戴振宏), Qi Zhong(钟琦), Yinchang Zhao(赵银昌), and Sheng Meng(孟胜). Chin. Phys. B, 2020, 29(12): 126501.
[10] Physical properties of ternary thallium chalcogenes Tl2MQ3 (M=Zr, Hf; Q=S, Se, Te) via ab-initio calculations
Engin Ateser, Oguzhan Okvuran, Yasemin Oztekin Ciftci, Haci Ozisik, Engin Deligoz. Chin. Phys. B, 2019, 28(10): 106301.
[11] Modulated thermal transport for flexural and in-plane phonons in double-stub graphene nanoribbons
Chang-Ning Pan(潘长宁), Meng-Qiu Long(龙孟秋), Jun He(何军). Chin. Phys. B, 2018, 27(8): 088101.
[12] Thermoelectric properties of lower concentration K-doped Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Sen Chen(陈森), Dan Yan(闫丹), Jin-GuangYang(杨金光), Li Wang(王立), Xiu-Lan Huai(淮秀兰). Chin. Phys. B, 2018, 27(5): 057201.
[13] Enhanced thermoelectric properties of p-type polycrystalline SnSe by regulating the anisotropic crystal growth and Sn vacancy
Chengyan Liu(刘呈燕), Lei Miao(苗蕾), Xiaoyang Wang(王潇漾), Shaohai Wu(伍少海), Yanyan Zheng(郑岩岩), Ziyang Deng(邓梓阳), Yulian Chen(陈玉莲), Guiwen Wang(王桂文), Xiaoyuan Zhou(周小元). Chin. Phys. B, 2018, 27(4): 047211.
[14] Enhanced thermoelectric performance in p-type Mg3Sb2 via lithium doping
Hao Wang(王浩), Jin Chen(陈进), Tianqi Lu(陆天奇), Kunjie Zhu(朱坤杰), Shan Li(李珊), Jun Liu(刘军), Huaizhou Zhao(赵怀周). Chin. Phys. B, 2018, 27(4): 047212.
[15] Graphene-enhanced thermoelectric properties of p-type skutterudites
Dandan Qin(秦丹丹), Yuan Liu(刘嫄), Xianfu Meng(孟宪福), Bo Cui(崔博), Yaya Qi(祁亚亚), Wei Cai(蔡伟), Jiehe Sui(隋解和). Chin. Phys. B, 2018, 27(4): 048402.
No Suggested Reading articles found!