Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 034208    DOI: 10.1088/1674-1056/ac16d0
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers

Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨)
Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
Abstract  The 808-nm vertical cavity surface emitting laser (VCSEL) with strained In0.13Ga0.75Al0.12As/Al0.3Ga0.7As quantum wells is designed and fabricated. Compared with the VCSELs with Al0.05Ga0.95As/Al0.3Ga0.7As quantum wells, the VCSEL with strained In0.13Ga0.75Al0.12As/Al0.3Ga0.7As quantum wells is demonstrated to possess higher power conversion efficiency (PCE) and better temperature stability. The maximum PCE of 43.8% for 10-μm VCSEL is achieved at an ambient temperature of 30 ℃. The size-dependent thermal characteristics are also analyzed by characterizing the spectral power and output power. It demonstrates that small oxide-aperture VCSELs are advantageous for temperature-stable performance.
Keywords:  808-nm VCSEL      InGaAlAs/AlGaAs quantum wells      thermal property  
Received:  30 May 2021      Revised:  04 July 2021      Accepted manuscript online:  22 July 2021
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  42.55.Sa (Microcavity and microdisk lasers)  
  73.21.Fg (Quantum wells)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61804175), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. ZDBS-LY-JSC031), and the China Postdoctoral Science Foundation (Grant No. BX20200358).
Corresponding Authors:  Meng Xun     E-mail:  xunmeng@ime.ac.cn

Cite this article: 

Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨) Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers 2022 Chin. Phys. B 31 034208

[1] Huffaker D L and Deppe D G 1994 Appl. Phys. Lett. 65 97
[2] Valle A, Sciamanna M and Panajotov K 2007 Phys. Rev. E 76 046206
[3] Jaeger R, Grabherr M, Jung C, Michalzik R, Reiner G, Weigl B and Ebeling K J 1997 Electron. Lett. 33 330
[4] Larisch G, Moser P, Lott J A and Bimberg D 2016 IEEE Photon. Technol. Lett. 28 2327
[5] Xun M, Pan G Z, Zhao Z Z, Sun Y, Zhou J T and Wu D X 2021 IEEE Trans. Electron. Dev. 68 2829
[6] Xiang L, Zhang X, Zhang J W, Huang Y W, Ning Y Q and Wang L J 2017 Chin. Phys. B 26 074209
[7] Seurin J F, Ghosh C L, Khalfin V, Miglo A, Xu G, Wynn J D, Pradhan P and D'Asaro L A 2008 Proc. SPIE 6908 690808
[8] Seurin J F, Zhou D, Xu G, Miglo A and Ghosh C 2016 Proc. SPIE 9766 97660
[9] E. Hugues-Salas, Giddings R P, Jin X Q, Wei J L, Zheng X, Hong Y, Shu C and Tang J M 2011 Opt. Express 19 2979
[10] Harris J S, Sullivan T O, Sarmiento T, Lee M M and Vo S 2010 Semicond. Sci. Technol. 26 14010
[11] Xun M, Sun Y, Xu C, Xie Y Y, Jin Z, Zhou J T, Liu X Y and Wu D X 2018 Chin. Phys. Lett. 35 034202
[12] Hariyama T, Sandborn P A M, Watanabe M and Wu M C 2018 Opt. Express 26 9285
[13] Wang L J, Ning Y Q, Zhang X, Zhong C Y, Werner and Hofmann 2018 IEEE Photon. J. 10 1
[14] Di P C, Li X P, Yang J, Wang R J and Peng Q J 2021 IEEE Photon. Technol. Lett. 33 395
[15] Hao Y Q, Ma J L and Yan C L 2013 Laser Phys. Lett. 10 055003
[16] Hession M T, Markova A and Graber E M 2015 Dermatol. Surg. 41 307
[17] Geske J, Wang C, MacDougal M, Stahl R, Follman D, Garrett H, Meyrath T, Snyder D, Golden E, Wagener J and Foley J 2010 Proc. SPIE 7615 76150
[18] Seurin J F, Xu G, Guo B, Miglo A, Wang Q, Pradhan P, Wynn J D, Khalfin V, Zou W X, Ghosh C L and Leeuwen R V 2011 Proc. SPIE 7952 669
[19] Seurin J F, Xu G, Khalfin V, Miglo A, Wynn J D, Pradhan P, Ghosh C L and D'Asaro L A 2009 Proc. SPIE 7229 722903
[20] Zhong C Y, Zhang X, Hofmann W, Ning Y Q and Wang L J 2018 IEEE Photon. J. 10 1504608
[21] Zhang Y, Ning Y Q, Zhang L, Zhang J S, Zhang J W, Wang Z F, Jian Z, Zeng Y G and Wang L J 2011 Opt. Express 19 12569
[22] Fujisawa T, Sato T, Mitsuhara M, Kakitsuka T, Yamanaka T, Kondo Y and Kano F 2009 IEEE J. Quantum Electron. 45 1183
[23] Zhao Z Z, Xun M, Pan G Z, Sun Y, Zhou J T, Wang D H and Wu D X 2021 Acta Phys. Sin. 70 114202 (in Chinese)
[24] Coldren and Larry A 1995 Opt. Eng. 36 616
[25] Xun M, Pan G Z, Zhao Z Z, Sun Y, Yang C Y, Kan Q, Zhou J T and Wu D X 2020 IEEE Trans. Electron. Dev. 68 158
[1] Effects of filler loading and surface modification on electrical and thermal properties of epoxy/montmorillonite composite
Zi-Rui Jia(贾梓睿), Zhen-Guo Gao(高振国), Di Lan(兰笛), Yong-Hong Cheng(成永红), Guang-Lei Wu(吴广磊), Hong-Jing Wu(吴宏景). Chin. Phys. B, 2018, 27(11): 117806.
[2] Thermal properties of a two-dimensional intrinsically curved semiflexible biopolymer
Zicong Zhou(周子聪), Yanting Wang(王延颋). Chin. Phys. B, 2017, 26(3): 038701.
[3] Investigations of high-pressure and high-temperature behaviors of the newly-discovered willemite-Ⅱ and post-phenacite silicon nitrides
Chen Dong (陈东). Chin. Phys. B, 2013, 22(12): 126301.
No Suggested Reading articles found!