ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers |
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟)†, Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨) |
Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China |
|
|
Abstract The 808-nm vertical cavity surface emitting laser (VCSEL) with strained In0.13Ga0.75Al0.12As/Al0.3Ga0.7As quantum wells is designed and fabricated. Compared with the VCSELs with Al0.05Ga0.95As/Al0.3Ga0.7As quantum wells, the VCSEL with strained In0.13Ga0.75Al0.12As/Al0.3Ga0.7As quantum wells is demonstrated to possess higher power conversion efficiency (PCE) and better temperature stability. The maximum PCE of 43.8% for 10-μm VCSEL is achieved at an ambient temperature of 30 ℃. The size-dependent thermal characteristics are also analyzed by characterizing the spectral power and output power. It demonstrates that small oxide-aperture VCSELs are advantageous for temperature-stable performance.
|
Received: 30 May 2021
Revised: 04 July 2021
Accepted manuscript online: 22 July 2021
|
PACS:
|
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
42.55.Sa
|
(Microcavity and microdisk lasers)
|
|
73.21.Fg
|
(Quantum wells)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61804175), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. ZDBS-LY-JSC031), and the China Postdoctoral Science Foundation (Grant No. BX20200358). |
Corresponding Authors:
Meng Xun
E-mail: xunmeng@ime.ac.cn
|
Cite this article:
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨) Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers 2022 Chin. Phys. B 31 034208
|
[1] Huffaker D L and Deppe D G 1994 Appl. Phys. Lett. 65 97 [2] Valle A, Sciamanna M and Panajotov K 2007 Phys. Rev. E 76 046206 [3] Jaeger R, Grabherr M, Jung C, Michalzik R, Reiner G, Weigl B and Ebeling K J 1997 Electron. Lett. 33 330 [4] Larisch G, Moser P, Lott J A and Bimberg D 2016 IEEE Photon. Technol. Lett. 28 2327 [5] Xun M, Pan G Z, Zhao Z Z, Sun Y, Zhou J T and Wu D X 2021 IEEE Trans. Electron. Dev. 68 2829 [6] Xiang L, Zhang X, Zhang J W, Huang Y W, Ning Y Q and Wang L J 2017 Chin. Phys. B 26 074209 [7] Seurin J F, Ghosh C L, Khalfin V, Miglo A, Xu G, Wynn J D, Pradhan P and D'Asaro L A 2008 Proc. SPIE 6908 690808 [8] Seurin J F, Zhou D, Xu G, Miglo A and Ghosh C 2016 Proc. SPIE 9766 97660 [9] E. Hugues-Salas, Giddings R P, Jin X Q, Wei J L, Zheng X, Hong Y, Shu C and Tang J M 2011 Opt. Express 19 2979 [10] Harris J S, Sullivan T O, Sarmiento T, Lee M M and Vo S 2010 Semicond. Sci. Technol. 26 14010 [11] Xun M, Sun Y, Xu C, Xie Y Y, Jin Z, Zhou J T, Liu X Y and Wu D X 2018 Chin. Phys. Lett. 35 034202 [12] Hariyama T, Sandborn P A M, Watanabe M and Wu M C 2018 Opt. Express 26 9285 [13] Wang L J, Ning Y Q, Zhang X, Zhong C Y, Werner and Hofmann 2018 IEEE Photon. J. 10 1 [14] Di P C, Li X P, Yang J, Wang R J and Peng Q J 2021 IEEE Photon. Technol. Lett. 33 395 [15] Hao Y Q, Ma J L and Yan C L 2013 Laser Phys. Lett. 10 055003 [16] Hession M T, Markova A and Graber E M 2015 Dermatol. Surg. 41 307 [17] Geske J, Wang C, MacDougal M, Stahl R, Follman D, Garrett H, Meyrath T, Snyder D, Golden E, Wagener J and Foley J 2010 Proc. SPIE 7615 76150 [18] Seurin J F, Xu G, Guo B, Miglo A, Wang Q, Pradhan P, Wynn J D, Khalfin V, Zou W X, Ghosh C L and Leeuwen R V 2011 Proc. SPIE 7952 669 [19] Seurin J F, Xu G, Khalfin V, Miglo A, Wynn J D, Pradhan P, Ghosh C L and D'Asaro L A 2009 Proc. SPIE 7229 722903 [20] Zhong C Y, Zhang X, Hofmann W, Ning Y Q and Wang L J 2018 IEEE Photon. J. 10 1504608 [21] Zhang Y, Ning Y Q, Zhang L, Zhang J S, Zhang J W, Wang Z F, Jian Z, Zeng Y G and Wang L J 2011 Opt. Express 19 12569 [22] Fujisawa T, Sato T, Mitsuhara M, Kakitsuka T, Yamanaka T, Kondo Y and Kano F 2009 IEEE J. Quantum Electron. 45 1183 [23] Zhao Z Z, Xun M, Pan G Z, Sun Y, Zhou J T, Wang D H and Wu D X 2021 Acta Phys. Sin. 70 114202 (in Chinese) [24] Coldren and Larry A 1995 Opt. Eng. 36 616 [25] Xun M, Pan G Z, Zhao Z Z, Sun Y, Yang C Y, Kan Q, Zhou J T and Wu D X 2020 IEEE Trans. Electron. Dev. 68 158 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|