Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 076104    DOI: 10.1088/1674-1056/abf34d
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

A novel two-dimensional SiO sheet with high-stability, strain tunable electronic structure, and excellent mechanical properties

Shijie Liu(刘世杰)1,2,† and Hui Du(杜慧)1,‡
1 Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China;
2 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Abstract  Using the structure search of particle swarm optimization (PSO) algorithm combined with density functional theory (DFT), we conduct a systematic two-dimensional (2D) material research on the SiO and discover a P2 monolayer structure. The phonon spectrum shows that the 2D P2 is dynamic-stable under ambient pressure. Molecular dynamics simulations show that 2D P2 can still exist stably at a high temperature of 1000 K, indicating that 2D P2 has application potential in high-temperature environments. The intrinsic 2D P2 structure has a quasi-direct band gap of 3.2 eV. The 2D P2 structure can be transformed into a direct band gap semiconductor by appropriate strain, and the band gap can be adjusted to the ideal band gap of 1.2 eV-1.6 eV for photovoltaic materials. These unique properties of the 2D P2 structure make it expected to have potential applications in nanomechanics and nanoelectronics.
Keywords:  2D material      SiO sheet      first-principles method      strain  
Received:  29 January 2021      Revised:  26 March 2021      Accepted manuscript online:  30 March 2021
PACS:  61.46.-w (Structure of nanoscale materials)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12004102 and 11847094), the China Postdoctoral Science Foundation (Grant No. 2020M670836), and the Open Project of State Key Laboratory of Superhard Materials in Jilin University (Grant No. 201703).
Corresponding Authors:  Shijie Liu, Hui Du     E-mail:  liusj0228@163.com;duhui0207@163.com

Cite this article: 

Shijie Liu(刘世杰) and Hui Du(杜慧) A novel two-dimensional SiO sheet with high-stability, strain tunable electronic structure, and excellent mechanical properties 2021 Chin. Phys. B 30 076104

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[2] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[3] Sarikurt S, Kadioglu Y, Ersan F, Vatansever E, Aktürk O ü, Yüksel Y, Akinci ü and Aktürk E 2018 Phys. Chem. Chem. Phys. 20 997
[4] Zhou X F, Dong X, Oganov A R, Zhu Q, Tian Y J and Wang H T 2014 Phys. Rev. Lett. 112 085502
[5] Dong L, Wang A W, Li E, Wang Q, Li G, Huan Q and Gao H J 2019 Chin. Phys. Lett. 36 028102
[6] Gu Y Y, Wang Y F, Xia J and Meng X M 2020 Chin. Phys. Lett. 37 048101
[7] Liu P F, Wu Y, Bo T, Hou L, Xu J P, Zhang H J and Wang B T 2018 Phys. Chem. Chem. Phys. 20 732
[8] Zhang L Z, Wang Z F, Du S X, Gao H J and Liu F 2014 Phys. Rev. B 90 161402
[9] Jiao Y, Ma F, Bell J, Bilic A and Du A 2016 Angew. Chem. 128 10448
[10] Du H, Li G, Chen J, Lv Z, Chen Y and Liu S 2020 Phys. Chem. Chem. Phys. 22 20107
[11] Song L L, Zhang L Z, Guan Y R, Lu J C, Yan C X and Cai J M 2019 Chin. Phys. B 28 037101
[12] Cai X, Chen Y, Sun B, Chen J, Wang H, Ni Y, Tao L, Wang H, Zhu S, Li X, Wang Y, Lv J, Feng X, Redfern S A T and Chen Z 2019 Nanoscale 11 8260
[13] Wang X G, Xia B Y, Gou J, Cheng P, Xu Y, Chen L and Wu K H 2020 Chin. Phys. Lett. 37 066802
[14] Liu H, Sun J T, Song C C, Huang H Q, Liu F and Meng S 2020 Chin. Phys. Lett. 37 067101
[15] Zhao Y H, Liu B, Yang J L, He J and Jiang J 2020 Chin. Phys. Lett. 37 088501
[16] Li J M, Yao Y K, Sun L H, Shan X Y, Wang C and Lu X H 2019 Chin. Phys. Lett. 36 048201
[17] Du H, Liu S J, Li G L, Li L B, Liu X S and Liu B B 2019 Chin. Phys. B 28 016105
[18] Zhang S H, Zhou J, Wang Q, Chen X S, Kawazoe Y and Jena P 2015 Proc. Natl. Acad. Sci. USA 112 2372
[19] Zhang S L, Yan Z, Li Y F, Chen Z F and Zeng H B 2015 Angew. Chem. Int. Ed. 54 3112
[20] Gao Z B, Dong X, Li N B and Ren J 2017 Nano Lett. 17 772
[21] Liu S, Du H, Li G, Li L, Shi X and Liu B 2018 Phys. Chem. Chem. Phys. 20 20615
[22] Zhang M, Gao G, Kutana A, Wang Y, Zou X, Tse J S, Yakobson B I, Li H, Liu H and Ma Y 2015 Nanoscale 7 12023
[23] Kazmerski L L 2006 J. Electron Spectrosc. Relat. Phenom. 150 105
[24] Gao B, Gao P, Lu S, Lv J, Wang Y and Ma Y 2019 Sci. Bull. 64 301
[25] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063
[26] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[27] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[28] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[29] Blochl P E 1994 Phys. Rev. B 50 17953
[30] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[31] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[32] Kim D Y, Stefanoski S, Kurakevych O O and Strobel T A 2015 Nat. Mater. 14 169
[33] Liu S, Liu B, Shi X, Lv J, Niu S, Yao M, Li Q, Liu R, Cui T and Liu B 2017 Sci. Rep. 7 2404
[34] Feng J, Qian X, Huang C W and Li J 2012 Nat. Photon. 6 866
[35] Plechinger G, Castellanos-Gomez A, Buscema M, Van Der Zant H S, Steele G A, Kuc A, Heine T, Schüller C and Korn T 2015 2D Mater. 2 015006
[36] Fan P, Qian G J, Wang D F, Li E, Wang Q, Chen H, Lin X and Gao H J 2021 Chin. Phys. B 30 018105
[37] He Y F, Wang L X, Xiao Z X, Lv Y W, Liao L and Jiang C Z 2020 Chin. Phys. Lett. 37 088502
[38] Zhang S, Song Y, Li H, Li J M, Qian K, Liu C, Wang J O, Qian T, Zhang Y Y, Lu J C, Ding H, Lin X, Pan J B, Du S X and Gao H J 2020 Chin. Phys. Lett. 37 068103
[39] Zha X H, Zhou J, Luo K, Lang J J, Huang Q, Zhou X B, Francisco J S, He J and Du S Y 2017 J. Phys.: Condens. Matter 29 165701
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[3] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[4] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[5] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[6] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[7] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[8] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[9] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[10] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[11] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
[12] Accurate theoretical evaluation of strain energy of all-carboatomic ring (cyclo[2n]carbon), boron nitride ring, and cyclic polyacetylene
Tian Lu(卢天), Zeyu Liu(刘泽玉), and Qinxue Chen(陈沁雪). Chin. Phys. B, 2022, 31(12): 126101.
[13] Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮). Chin. Phys. B, 2022, 31(11): 117701.
[14] Strain-modulated anisotropic Andreev reflection in a graphene-based superconducting junction
Xingfei Zhou(周兴飞), Ziming Xu (许子铭), Deliang Cao(曹德亮), and Fenghua Qi(戚凤华). Chin. Phys. B, 2022, 31(11): 117403.
[15] Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate
Ji-Shuo Wang(王积硕), Cai-Bin Xu(许才彬), You-Xuan Zhao(赵友选), Ning Hu(胡宁), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2022, 31(1): 014301.
No Suggested Reading articles found!