Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 014301    DOI: 10.1088/1674-1056/ac0da8
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate

Ji-Shuo Wang(王积硕)1, Cai-Bin Xu(许才彬)1, You-Xuan Zhao(赵友选)1, Ning Hu(胡宁)1,2, and Ming-Xi Deng(邓明晰)1,†
1 College of Aerospace Engineering, Chongqing University, Chongqing, 400044, China;
2 School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
Abstract  A novel Lamb wave frequency-mixing technique is proposed for locating microcracks in a thin plate, which does not require the resonance condition of Lamb wave mixing and can accurately locate the microcracks through only one-time sensing. Based on the bilinear stress-strain constitutive model, a two-dimensional finite element (FE) model is built to investigate the frequency-mixing response induced by the interaction between two primary Lamb waves and a microcrack. When two primary Lamb waves of A0 and S0 modes with different frequencies excited on the same side of the plate simultaneously impinge on the examined microcrack, under the modulation of the contact acoustic nonlinearity, the microcrack itself can be deemed as the secondary sound source and it will radiate the Lamb waves of new combined frequencies. Based on the time of flight of the generated A0 mode at difference frequency, an indicator named normalized amplitude index (NAI) is defined to directly locate the multi-microcracks in the given plate. It is found that the number and location of the microcracks can be intuitively visualized by using the NAI based frequency-mixing technique. It is also demonstrated that the proposed frequency mixing technique is a promising approach for the microcrack localization.
Keywords:  frequency-mixing of Lamb waves      contact acoustic nonlinearity      bilinear stress-strain constitutive model      microcrack localization  
Received:  05 March 2021      Revised:  12 May 2021      Accepted manuscript online:  23 June 2021
PACS:  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  43.25.+y (Nonlinear acoustics)  
  43.20.Mv (Waveguides, wave propagation in tubes and ducts)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074050, 52005058, 11834008, and 11632004), the China Postdoctoral Science Foundation (Grant No. 2020M673119), and the Fund for Innovative Research Groups of Natural Science Foundation of Hebei Province, China (Grant No. A2020202002).
Corresponding Authors:  Ming-Xi Deng     E-mail:  dengmx65@yahoo.com

Cite this article: 

Ji-Shuo Wang(王积硕), Cai-Bin Xu(许才彬), You-Xuan Zhao(赵友选), Ning Hu(胡宁), and Ming-Xi Deng(邓明晰) Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate 2022 Chin. Phys. B 31 014301

[1] Peter C and David A 1996 Ultrasonics 34 287
[2] Gao H and Rose J L 2010 Aeronaut. J. 114 49
[3] Jeong H, Nahm S H, Jhang K Y and Nam Y H 2003 Ultrasonics 41 543
[4] Deng M X and Pei J F 2007 Appl. Phys. Lett. 90 121902
[5] Zhao Y X, Li F L, Cao P, Liu Y L, Zhang J Y, Fu S Y, Zhang J and Hu N 2017 Ultrasonics 79 60
[6] Gao G J, Liu C, Hu N, Deng M X, Chen H and Xiang Y X 2020 Wave Motion 96 102557
[7] Liu Y X, He A J, Liu J H, Mao Y W and Liu X Z 2020 Chin. Phys. B 29 054301
[8] Gao G J, Deng M X, Hu N and Xiang Y X 2020 Chin. Phys. B 29 024301
[9] Li M L, Liu L B, Gao G J, Deng M X, Hu N, Xiang Y X and Zhu W J 2019 Chin. Phys. B 28 044301
[10] Li W B, Deng M X and Xiang Y X 2017 Chin. Phys. B 26 114302
[11] Deng M X and Xiang Y X 2010 Chin. Phys. B 19 114302
[12] Xiang Y X, Zhu W J, Deng M X and Xuan F Z 2016 Chin. Phys. B 25 024303
[13] Xiang Y X and Deng M X 2008 Chin. Phys. B 17 4232
[14] Jiao J P, Meng X J, He C F and Wu B 2017 NDT&E Int. 85 63
[15] Li W B, Deng M X, Hu N and Xiang Y X 2018 J. Appl. Phys. 124 044901
[16] Ding X Y, Zhao Y X, Deng M X, Shui G S and Hu N 2020 Int. J. Mech. Sci. 171 105371
[17] Sun M X and Qu J M 2020 Ultrasonics 108 106180
[18] Croxford A J, Wilcox P, Drinkwater B and Nagy P 2009 J. Acoust. Soc. Am. 126 EL117
[19] Blanloeuil P, Meziane A and Bacon C 2015 NDT&E Int. 76 43
[20] Lv H T, Jiao J P, Wu B and He C F 2019 Acta Mech. Solida Sin. 32 767
[21] Deng M X and Liu Z Q 2003 Wave Motion 37 157
[22] Chen Z M, Tang G X, Zhao Y X, Jacobs L J and Qu J M 2014 J. Acoust. Soc. Am. 136 2389
[23] Zhao Y X, Chen Z M, Cao P and Qiu Y J 2015 NDT&E Int. 72 33
[24] Li F L, Zhao Y X, Cao P and Hu N 2018 Ultrasonics 87 33
[25] Sun M X, Xiang Y X, Deng M X, Xu J C and Xuan F Z 2018 NDT&E Int. 93 1
[26] Sun M X, Xiang Y X, Deng M X, Tang B, Zhu W J and Xuan F Z 2019 App. Phys. Lett. 114 011902
[27] Li W B, Xu Y R, Hu N and Deng M X 2020 AIP Adv. 10 045119
[28] Aslam M, Bijudas C R, Nagarajan P and Remanan M 2020 J. Aerosp. Eng. 33 04020037
[29] Yuan B, Shui G S and Wang Y S 2020 J. Mater. Eng. Perform. 29 4575
[30] Jiao J P, Sun J J, Li N, Song G R, Wu B and He C F 2014 NDT&E Int. 62 122
[31] Zhu W G, Li Y F, Guan L Q, Wan X L, Yu H Y and Liu X Z 2020 Chin. Phys. B 29 014302
[32] Broda D, Staszewski W, Martowicz A, Uhl T and Silberschmidt V 2014 J. Sound Vib. 333 1097
[33] Solodov I, Krohn N and Busse G 2002 Ultrasonics 40 621
[34] Wang J S, Xu C B, Zhao Y X, Hu N and Deng M X 2020 Materials 13 3318
[35] Abeele K V D, Johnson P and Sutin A 2000 Res. Nondestr. Eval. 12 17
[36] Hasanian M and Lissenden C J 2018 J. Appl. Phys. 124 164904
[37] Metya A K, Tarafder S and Balasubramaniam K 2018 NDT&E Int. 98 89
[38] Terrien N, Osmont D, Royer D, Lepoutre F and Deom A 2007 Ultrasonics 46 74
[39] Wilkening W, Krueger M and Ermert H 2000 IEEE Ultrasonics Symposium, October 22-25, 2000, San Juan, Puerto Rico, Vol. 2 p. 1559
[40] Mandal D D and Banerjee S 2019 Mech. Syst. Signal Pr. 117 33
[1] Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄). Chin. Phys. B, 2023, 32(1): 014301.
[2] Effects of adjacent bubble on spatiotemporal evolutions of mechanical stresses surrounding bubbles oscillating in tissues
Qing-Qin Zou(邹青钦), Shuang Lei(雷双), Zhang-Yong Li(李章勇), and Dui Qin(秦对). Chin. Phys. B, 2023, 32(1): 014302.
[3] One-dimensional $\mathcal{PT}$-symmetric acoustic heterostructure
Hai-Xiao Zhang(张海啸), Wei Xiong(熊威), Ying Cheng(程营), and Xiao-Jun Liu(刘晓峻). Chin. Phys. B, 2022, 31(12): 124301.
[4] Computational simulation of ionization processes in single-bubble and multi-bubble sonoluminescence
Jin-Fu Liang(梁金福), De-Feng Xiong(熊德凤), Yu An(安宇), and Wei-Zhong Chen(陈伟中). Chin. Phys. B, 2022, 31(11): 117802.
[5] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[6] Sound-transparent anisotropic media for backscattering-immune wave manipulation
Wei-Wei Kan(阚威威), Qiu-Yu Li(李秋雨), and Lei Pan(潘蕾). Chin. Phys. B, 2022, 31(8): 084302.
[7] Analysis on vibration characteristics of large-size rectangular piezoelectric composite plate based on quasi-periodic phononic crystal structure
Li-Qing Hu(胡理情), Sha Wang(王莎), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2022, 31(5): 054302.
[8] Effect of nonlinear translations on the pulsation of cavitation bubbles
Lingling Zhang(张玲玲), Weizhong Chen(陈伟中), Yang Shen(沈阳), Yaorong Wu(武耀蓉), Guoying Zhao(赵帼英), and Shaoyang Kou(寇少杨). Chin. Phys. B, 2022, 31(4): 044303.
[9] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[10] Phonon dispersion relations of crystalline solids based on LAMMPS package
Zhiyong Wei(魏志勇), Tianhang Qi(戚天航), Weiyu Chen(陈伟宇), and Yunfei Chen(陈云飞). Chin. Phys. B, 2021, 30(11): 114301.
[11] Characterization of inner layer thickness change of a composite circular tube using nonlinear circumferential guided wave:A feasibility study
Ming-Liang Li(李明亮), Guang-Jian Gao(高广健), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2021, 30(8): 084301.
[12] An ultrasonic multi-wave focusing and imaging method for linear phased arrays
Yu-Xiang Dai(戴宇翔), Shou-Guo Yan(阎守国), and Bi-Xing Zhang(张碧星). Chin. Phys. B, 2021, 30(7): 074301.
[13] Radiation force and torque on a two-dimensional circular cross-section of a non-viscous eccentric layered compressible cylinder in acoustical standing waves
F G Mitri. Chin. Phys. B, 2021, 30(2): 024302.
[14] Symmetry-controlled edge states in graphene-like topological sonic crystal
Zhang-Zhao Yang(杨彰昭), Jin-Heng Chen(陈晋恒), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔)†. Chin. Phys. B, 2020, 29(10): 104302.
[15] Computation and analysis of light emission in two-bubble sonoluminescence
Jin-Fu Liang(梁金福), Xue-You Wu(吴学由), Yu An(安宇), Wei-Zhong Chen(陈伟中), Jun Wang(王军). Chin. Phys. B, 2020, 29(9): 097801.
No Suggested Reading articles found!