Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 076105    DOI: 10.1088/1674-1056/abf924

Magnetoelectric coupling effect of polarization regulation in BiFeO3/LaTiO3 heterostructures

Chao Jin(金超)1, Feng-Zhu Ren(任凤竹)1,†, Wei Sun(孙伟)1, Jing-Yu Li(李静玉)1, Bing Wang(王冰)1,‡, and Qin-Fen Gu(顾勤奋)2,§
1 Institute for Computational Materials Science, School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China;
2 Australian Synchrotron, ANSTO, 800 Blackburn Rd, Clayton, VIC, 3168, Australia
Abstract  An effective regulation of the magnetism and interface of ferromagnetic materials is not only of great scientific significance, but also has an urgent need in modern industry. In this work, by using the first-principles calculations, we demonstrate an effective approach to achieve non-volatile electrical control of ferromagnets, which proves this idea in multiferroic heterostructures of ferromagnetic LaTiO3 and ferroelectric BiFeO3. The results show that the magnetic properties and two-dimensional electron gas concentrations of LaTiO3 films can be controlled by changing the polarization directions of BiFeO3. The destroyed symmetry being introduced by ferroelectric polarization of the system leads to the transfer and reconstruction of the Ti-3d electrons, which is the fundamental reason for the changing of magnetic properties. This multiferroic heterostructures will pave the way for non-volatile electrical control of ferromagnets and have potential applications.
Keywords:  first-principles calculations      BiFeO3/LaTiO3 heterostructures      magnetoelectric coupling effect      polarization regulation  
Received:  23 February 2021      Revised:  11 April 2021      Accepted manuscript online:  19 April 2021
PACS:  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
  77.55.Nv (Multiferroic/magnetoelectric films)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12047517), the International Cooperation Project of Science and Technology of Henan Province, China (Grant No. 182102410096), the Natural Science Foundation of Henan Province, China (Grant No. 202300410069), and the China Postdoctoral Science Foundation (Grant Nos. 2020M682274 and 2020TQ0089).
Corresponding Authors:  Feng-Zhu Ren, Bing Wang, Qin-Fen Gu     E-mail:;;

Cite this article: 

Chao Jin(金超), Feng-Zhu Ren(任凤竹), Wei Sun(孙伟), Jing-Yu Li(李静玉), Bing Wang(王冰), and Qin-Fen Gu(顾勤奋) Magnetoelectric coupling effect of polarization regulation in BiFeO3/LaTiO3 heterostructures 2021 Chin. Phys. B 30 076105

[1] Cossu F, Singh N and Schwingenschloegl U 2013 Appl. Phys. Lett. 102 042401
[2] He J, Borisevich A, Kalinin S V, Pennycook S J and Pantelides S T 2010 Phys. Rev. Lett. 105 227203
[3] Wang B, Zhang X W, Zhang Y H, Yuan S Y, Guo Y L, Dong S and Wang J L 2020 Mater. Horiz. 7 1623
[4] Wang B, Zhang Y H, Ma L, Wu Q S, Guo Y L, Zhang X W and Wang J L 2019 Nanoscale 11 4204
[5] Hou F, Cai T Y, Ju S and Shen M R 2012 Acs Nano 6 8552
[6] Cao D, Cai M Q, Hu W Y, Peng J, Zheng Y and Huang H T 2011 Appl. Phys. Lett. 98 031910
[7] Cheng J, Nazir S and Yang K 2016 ACS Appl. Mater. Inter. 8 31959
[8] Wang B, Wu Q S, Zhang Y H, Guo Y L, Zhang X W, Zhou Q H, Dong S and Wang J L 2018 Nanoscale Horiz. 3 551
[9] Chen D, Zhang G B, Cheng Z X, Dong S and Wang YX 2019 IUCrJ 6 189
[10] Chen L, Xu C S, Tian H, Xiang H J, Iniguez J, Yang Y R and Bellaiche L 2019 Phys. Rev. Lett. 122 247701
[11] Dong S, Xiang H and Dagotto E 2019 Natl. Sci. Rev. 6 629
[12] Wen F D, Cao Y W, Liu X R, Pal B, Middey S, Kareev M and Chakhalian J 2018 Appl. Phys. Lett. 112 122405
[13] An M, Weng Y K, Zhang H M, Zhang J J, Zhang Y and Dong S 2017 Phys. Rev. B 96 235112
[14] Yao F, Zhang L F, Meng J L, Liu X J, Zhang X, Zhang WW, Meng J and Zhang H J 2018 J. Appl. Phys. 123 115304
[15] Lee M, Choi H and Chung Y C 2013 J. Appl. Phys. 113 425
[16] Mellan T A, Corá F, Grau-Crespo R and Ismail-Beigi S 2015 Phys. Rev. B 92 085151
[17] Tseng A, Pham A, Smith S C and Li S 2016 J. Appl. Phys. 119 075301
[18] Weng Y K, Zhang J J, Gao B and Dong S 2017 Phys. Rev. B 95 155117
[19] Yin L, Mi W B and Wang X C 2015 J. Mater. Chem. C 3 11066
[20] Dong S and Dagotto E 2013 Phys. Rev. B 88 140404
[21] Li Y, Sun X Y, Xu C Y, Cao J, Sun Z Y and Zhen L 2018 Nanoscale 10 23080
[22] Xue Y B, Zhao J Z, Shan Y Y and Xu H 2018 Physica E 98 120
[23] Wei L Y, Lian C and Meng S 2017 Phys. Rev. B 95 184102
[24] Karthikeyan R and Niranjan M K 2019 J. Magn. Magn. Mater. 469 138
[25] Nanda B R K and Satpathy S 2008 Phys. Rev. B 78 054427
[26] Dash S, Choudhary R N P, Das P R and Kumar A 2014 Appl. Phys. A 118 1023
[27] Hou Y S, Xiang H J and Gong X G 2014 Phys. Rev. B 89 064415
[28] Sun W, Wang W X and Chen D 2019 J. Phys. Chem. C 123 16393
[29] Larson P, Popović Z C and Satpathy S 2008 Phys. Rev. B 77 245122
[30] Okatov S, Poteryaev A and Lichtenstein A 2005 Europhys. Lett. 70 499
[31] Veit M J, Chan M K Ramshaw B J 2019 Phys. Rev. B 99 115126
[32] Weng Y K, Huang X and Tang Y K 2014 J. Appl. Phys. 115 17E108
[33] Mochizuki M Imada M 2004 New J. Phys. 6 154
[34] Lichtenberg F, Widmer D, Bednorz J G, Williams T and Reller A 1991 Z. Phys. B 82 211
[35] Tokura Y, Taguchi Y, Okada Y, Fujishima Y and Iye Y 1993 Phys. Rev. Lett. 70 2126
[36] Sheets W C, Boullay P and Lüders U U 2009 Thin Solid Films 517 5130
[37] Ohtomo A and Hwang H Y 2004 Nature 427 423
[38] Kan E J 2013 Adv. Mater. 771 7
[39] Lee A T and Han M J 2014 Phys. Rev. B 89 115108
[40] Feng N, Mi W B and Wang X C 2015 ACS Appl. Mater. Inter. 7 10612
[41] Wang H, Zheng Y and Cai M Q 2009 Solid State Commun. 149 641
[42] Lu Z X, Li P L and Wan J G 2017 ACS Appl. Mater. Inter. 9 27284
[43] Bai X F, Wei J and Tian B B 2016 J. Phys. Chem. C 120 3595
[44] Yin L, Wang X and Mi W 2016 Phys. Rev. Appl. 6 064022
[45] Yin L, Wang X and Mi W 2017 ACS Appl. Mater. Inter. 9 15887
[46] Perdew J P, Ruzsinszky A and Csonka G I 2008 Phys. Rev. Lett. 102 039902
[47] Blochl P E 1994 Phys. Rev. B 50 17953
[48] Kresse G and Furthmüller J 1993 Phys. Rev. B 47 558
[49] Sun W, Wang W X and Chen D 2019 J. Mater. Chem. C 7 463
[50] Zhang H M, Weng Y K and Yao X Y 2015 Phys. Rev. B 91 195145
[51] Zhou P X, Liu H M and Yan Z B 2014 J. Appl. Phys. 115 423
[52] Wang F, Li J and Du Y 2015 Appl. Surf. Sci. 355 1316
[53] Dagotto E, Hotta T and Moreo A 2001 Phys. Rep. 344 1
[54] Hashimoto T, Ishibashi S and Terakura K 2010 Phys. Rev. B 82 045124
[1] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[2] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[3] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[9] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[10] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[11] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[12] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[13] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[14] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[15] First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices
Huihui He(何慧卉) and Shenyuan Yang(杨身园). Chin. Phys. B, 2022, 31(1): 017104.
No Suggested Reading articles found!