CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Small activation entropy bestows high-stability of nanoconfined D-mannitol |
Lin Cao(曹琳)1,2,3, Li-Jian Song(宋丽建)2,3,†, Ya-Ru Cao(曹亚茹)2,3, Wei Xu(许巍)2,3, Jun-Tao Huo(霍军涛)2,3, Yun-Zhuo Lv(吕云卓)1,‡, and Jun-Qiang Wang(王军强)2,3,§ |
1 School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China; 2 CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences(CAS), Ningbo 315201, China; 3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract It has been a long-standing puzzling problem that some glasses exhibit higher glass transition temperatures (denoting high stability) but lower activation energy for relaxations (denoting low stability). In this paper, the relaxation kinetics of the nanoconfined D-mannitol (DM) glass was studied systematically using a high-precision and high-rate nanocalorimeter. The nanoconfined DM exhibits enhanced thermal stability compared to the free DM. For example, the critical cooling rate for glass formation decreases from 200 K/s to below 1 K/s; the Tg increases by about 20 K-50 K. The relaxation kinetics is analyzed based on the absolute reaction rate theory. It is found that, even though the activation energy E* decreases, the activation entropy S* decreases much more for the nanoconfined glass that yields a large activation free energy G* and higher thermal stability. These results suggest that the activation entropy may provide new insights in understanding the abnormal kinetics of nanoconfined glassy systems.
|
Received: 08 March 2021
Revised: 06 April 2021
Accepted manuscript online: 19 April 2021
|
PACS:
|
61.43.Fs
|
(Glasses)
|
|
61.20.Lc
|
(Time-dependent properties; relaxation)
|
|
64.70.P-
|
(Glass transitions of specific systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52001319, 52071327, 51922102, 51771216, and 51701230), the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LR18E010002), the Ningbo 2025 Science and Technology Innovation Project (Grant No. 2019B10051), and the Natural Science Foundation of Ningbo City (Grant No. 202003N4354). |
Corresponding Authors:
Li-Jian Song, Yun-Zhuo Lv, Jun-Qiang Wang
E-mail: songlj@nimte.ac.cn;yunzhuohit@gmail.com;jqwang@nimte.ac.cn
|
Cite this article:
Lin Cao(曹琳), Li-Jian Song(宋丽建), Ya-Ru Cao(曹亚茹), Wei Xu(许巍), Jun-Tao Huo(霍军涛), Yun-Zhuo Lv(吕云卓), and Jun-Qiang Wang(王军强) Small activation entropy bestows high-stability of nanoconfined D-mannitol 2021 Chin. Phys. B 30 076103
|
[1] Zhao H Y, Yu Z N, Begum F, Hedden R C and Simon S L 2014 Polymer 55 4959 [2] Wang H N, Hor J L, Zhang Y, Liu T Y, Lee D and Fakhraai Z 2018 ACS Nano 12 5580 [3] Casalini R, Zhu L, Baer E and Roland C M 2016 Polymer 88 133 [4] Schüller J, Mel'nichenko Y B, Richert R and Fischer E W 1994 Phys. Rev. Lett. 73 2224 [5] Cheng S X and McKenna G B 2019 Mol. Pharm. 16 856 [6] Dai X Y, Li H H, Ren Z J, Russell T P, Yan S K and Sun X L 2018 Macromolecules 51 5732 [7] Cao Y R, Song L J, Li A, Huo J T, Li F S, Xu W and Wang J Q 2020 Sci. China-Phys. Mech. Astron. 63 276113 [8] Laitinen R, Löbmann K, Strachan C J, Grohganz H and Rades T 2013 International Journal of Pharmaceutics 453 65 [9] Angell C A 1985 J. Non-Cryst. Solids 73 1 [10] Angell C A 1995 Science 267 1924 [11] Jo C L, Xia L, Ding D and Dong Y D 2006 Chin. Phys. Lett. 23 672 [12] Zhao L Z, Xue R J, Wang W H and Bai H Y 2017 Chin. Phys. B 26 018106 [13] Zhang F F, Chen Y M, Wang R P, Shen X, Wang J Q and Xu T F 2019 Chin. Phys. B 28 047802 [14] Wang J F, Liu L, Pu J and Xiao J Z 2004 Acta Phys. Sin. 53 1916 (in Chinese) [15] Qin Q and McKenna G B 2006 J. Non-Cryst. Solids 352 2977 [16] Michaelides A, Liu Z P, Zhang C J, Alavi A, King D A and Hu P 2003 J. Am. Chem. Soc. 125 3704 [17] Zarra S, Smulders M M J, Lefebvre Q, Clegg J K and Nitschke J R 2012 Angew. Chem. Int. Ed. 51 6882 [18] Rozwadowski T, Jasiurkowska-Delaporte M, Massalska-Arodź M, Yamamura Y and Saito K 2020 Phys. Chem. Chem. Phys. 22 24236 [19] Su W Y, Jia N, Li H S, Hao H X and Li C L 2017 Chin. J. Chem. Eng. 25 358 [20] Zhang P, Forsgren J and Stromme M 2014 Int. J. Pharmaceut. 472 185 [21] Yu L 2001 Adv. Drug. Deliver. Rev. 48 27 [22] Wibowo E S, Park B D and Causin V 2020 Ind. Eng. Chem. Res. 59 13095 [23] Zhu M, Wang J Q, Perepezko J H and Yu L 2015 J. Chem. Phys. 142 244504 [24] Brüning R and Samwer K 1992 Phys. Rev. B 46 11318 [25] Zhang B, Wang R J, Zhao D Q, Pan M X and Wang W H 2004 Phys. Rev. B 70 224208 [26] Böhmer R, Ngai K L, Angell C A and Plazek D J 1993 J. Chem. Phys. 99 4201 [27] Wang L M, Liu R P and Tian Y J 2020 Acta Phys. Sin. 69 196401 (in Chinese) [28] Wang L M, Tian Y J, Liu R P and Wang W H 2012 Appl. Phys. Lett. 100 261913 [29] Turnbull D 1969 Contemp. Phys. 10 473 [30] Chen H S 1981 J. Non-Cryst. Solids 46 289 [31] Gallino I, Cangialosi D, Evenson Z, Schmitt L, Hechler S, Stolpe M and Ruta B 2018 Acta Mater. 144 400 [32] Hornboll L and Yue Y Z 2008 J. Non-Cryst. Solids 354 350 [33] Perez-De-Eulate N G and Cangialosi D 2018 Macromolecules 51 3299 [34] Cangialosi D, Boucher V M, Alegria A and Colmenero J 2013 Phys. Rev. Lett. 111 095701 [35] Song L J, Xu W, Huo J T, Wang J Q, Wang X M and Li R W 2018 Intermetallics 93 101 [36] Cagle Jr F W and Eyring H 1951 J. Appl. Phys. 22 771 [37] Song L J, Xu W, Huo J T, Li F S, Wang L M, Ediger M D and Wang J Q 2020 Phys. Rev. Lett. 125 135501 [38] Starkweather H W 1981 Macromolecules 14 1277 [39] Kuo S W, Chan S C and Chang F C 2003 Macromolecules 36 6653 [40] Ma Y N, Zhou T, Su G H, Li Y and Zhang A M 2016 RSC Adv. 6 87405 [41] Yu H B and Yang Q 2017 Acta Phys. Sin. 66 176108 (in Chinese) [42] Ha J M, Wolf J H, Hillmyer M A and Ward M D 2004 J. Am. Chem. Soc. 126 3382 [43] Ha J M, Hillmyer M A and Ward M D 2005 J. Phys. Chem. B 109 1392 [44] Beiner M, Rengarajan G T, Pankaj S, Enke D and Steinhart M 2007 Nano Lett. 7 1381 [45] Rengarajan G T, Enke D, Steinhart M and Beiner M 2011 Phys. Chem. Chem. Phys. 13 21367 [46] Jackson C L and McKenna G B 1991 J. Non-Cryst. Solids 131 221 [47] Sonnenberger N, Anders N, Golitsyn Y, Steinhart M, Enke D, Saalwächter K and Beiner M 2016 Chem. Commun. 52 4466 [48] Arndt M, Stannarius R, Groothues H, Hempel E and Kremer F 1997 Phys. Rev. Lett. 79 2077 [49] Schönhals A, Goering H, Schick C, Frick B and Zorn R 2003 Eur. Phys. J. E 12 173 [50] Beiner M and Huth H 2003 Nat. Mater. 2 595 [51] Zuo Y C, Zhang Y Z, Huang R D and Min Y J 2019 Phys. Chem. Chem. Phys. 21 22 [52] Tang W and Perepezko J H 2018 J. Chem. Phys. 149 074505 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|