CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Pressure-induced anomalous insulating behavior in frustrated iridate La3Ir3O11 |
Chun-Hua Chen(陈春华)1,2, Yong-Hui Zhou(周永惠)1,†, Ying Zhou(周颖)3, Yi-Fang Yuan(袁亦方)1,2, Chao An(安超)3, Xu-Liang Chen(陈绪亮)1, Zhao-Ming Tian(田召明)4, and Zhao-Rong Yang(杨昭荣)1,3,5,‡ |
1 Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China; 2 Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China; 3 Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; 4 School of Physics, and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China; 5 High Magnetic Field Laboratory of Anhui Province, Hefei 230031, China |
|
|
Abstract The geometrically frustrated iridate La3Ir3O11 with strong spin-orbit coupling and fractional valence was recently predicted to be a quantum spin liquid candidate at ambient conditions. Here, we systematically investigate the evolution of structural and electronic properties of La3Ir3O11 under high pressure. Electrical transport measurements reveal an abnormal insulating behavior rather than metallization above a critical pressure Pc ~38.7 GPa. Synchrotron x-ray diffraction (XRD) experiments indicate the stability of the pristine cubic KSbO3-type structure up to 73.1 GPa. Nevertheless, when the pressure gradually increases across Pc, the bulk modulus gets enhanced and the pressure dependence of bond length dIr-Ir undergoes a slope change. Consistent with the XRD data, detailed analyses of Raman spectra reveal an abnormal redshift of Raman mode and a change of Raman intensity around Pc. Our results demonstrate that the pressure-induced insulating behavior in La3Ir3O11 can be assigned to the structural modification, such as the distortion of IrO6 octahedra. These findings will shed light on the emergent abnormal insulating behavior in other 5d iridates reported recently.
|
Received: 21 February 2021
Revised: 05 March 2021
Accepted manuscript online: 23 March 2021
|
PACS:
|
74.62.Fj
|
(Effects of pressure)
|
|
72.80.Ga
|
(Transition-metal compounds)
|
|
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
74.62.Bf
|
(Effects of material synthesis, crystal structure, and chemical composition)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0305704 and 2016YFA0401804), the National Natural Science Foundation of China (Grant Nos. U1632275, U1932152, 11874362, 11704387, 11804344, 11804341, 11974016, U19A2093, and U1832209), the Natural Science Foundation of Anhui Province, China (Grant Nos. 1808085MA06, 2008085QA40, and 1908085QA18), the Users with Excellence Project of Hefei Center CAS (Grant No. 2020HSC-UE015), and the Collaborative Innovation Program of Hefei Science Center CAS (Grant No. 2020HSC-CIP014). A portion of this work was supported by the High Magnetic Field Laboratory of Anhui Province under Contract No. AHHM-FX-2020-02. Yonghui Zhou was supported by the Youth Innovation Promotion Association CAS (Grant No. 2020443). |
Corresponding Authors:
Yong-Hui Zhou, Zhao-Rong Yang
E-mail: yhzhou@hmfl.ac.cn;zryang@issp.ac.cn
|
Cite this article:
Chun-Hua Chen(陈春华), Yong-Hui Zhou(周永惠), Ying Zhou(周颖), Yi-Fang Yuan(袁亦方), Chao An(安超), Xu-Liang Chen(陈绪亮), Zhao-Ming Tian(田召明), and Zhao-Rong Yang(杨昭荣) Pressure-induced anomalous insulating behavior in frustrated iridate La3Ir3O11 2021 Chin. Phys. B 30 067402
|
[1] Cao G and Schlottmann P 2018 Rep. Prog. Phys. 81 042502 [2] Pesin D and Balents L 2010 Nat. Phys. 6 376 [3] Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101 [4] Kim B J, Ohsumi H, Komesu T, Sakai S, Morita T, Takagi H and Arima T 2009 Science 323 1329 [5] Okamoto Y, Nohara M, Aruga-Katori H and Takagi H 2007 Phys. Rev. Lett. 99 137207 [6] Chaloupka J, Jackeli G and Khaliullin G 2010 Phys. Rev. Lett. 105 027204 [7] Choi S K, Coldea R, Kolmogorov A N, Lancaster T, Mazin I I, Blundell S J, Radaelli P G, Singh Y, Gegenwart P, Choi K R, Cheong S W, Baker P J, Stock C and Taylor J 2012 Phys. Rev. Lett. 108 127204 [8] Rau J G, Lee E K-H and Kee H-Y 2016 Annu. Rev. Condens. Matter Phys. 7 195 [9] Moon S J, Jin H, Kim K W, Choi W S, Lee Y S, Yu J, Cao G, Sumi A, Funakubo H, Bernhard C and Noh T W 2008 Phys. Rev. Lett. 101 226402 [10] Ramirez A P 1994 Annu. Rev. Mat. Sci. 24 453 [11] Abraham F, Trehoux J and Thomas D 1979 J. Less-Common Metals 63 57 [12] Kim B J, Jin H, Moon S J, Kim J Y, Park B G, Leem C S, Yu J, Noh T W, Kim C, Oh S J, Park J H, Durairaj V, Cao G and Rotenberg E 2008 Phys. Rev. Lett. 101 076402 [13] Abraham F, Trehoux J, Thomas D and Wagner F E 1982 J. Less-Common Metals 84 245 [14] Singh V and Pulikkotil J J 2017 Mater. Chem. Phys. 186 592 [15] Aoyama T, Emi K, Tabata C, Nambu Y, Nakao H, Yamauchi T and Ohgushi K 2019 J. Phys. Soc. Jpn. 88 093706 [16] Yang J, Wang J R, Zhen W L, Ma L, Ling L S, Tong W, Zhang C J, Pi L and Zhu W K 2019 Phys. Rev. B 100 205107 [17] Anderson P W 1987 Science 235 1196 [18] Chen C, Zhou Y, Chen X, Han T, An C, Zhou Y, Yuan Y, Zhang B, Wang S, Zhang R, Zhang L, Zhang C, Yang Z, DeLong L E and Cao G 2020 Phys. Rev. B 101 144102 [19] Haskel D, Fabbris G, Zhernenkov M, Kong P P, Jin C Q, Cao G and van Veenendaal M 2012 Phys. Rev. Lett. 109 027204 [20] Ding Y, Yang L, Chen C C, Kim H S, Han M J, Luo W, Feng Z, Upton M, Casa D, Kim J, Gog T, Zeng Z, Cao G, Mao H K and van Veenendaal M 2016 Phys. Rev. Lett. 116 216402 [21] Hermann V, Ebad-Allah J, Freund F, Pietsch I M, Jesche A, Tsirlin A A, Deisenhofer J, Hanfland M, Gegenwart P and Kuntscher C A 2017 Phys. Rev. B 96 195137 [22] Hermann V, Altmeyer M, Ebad-Allah J, Freund F, Jesche A, Tsirlin A A, Hanfland M, Gegenwart P, Mazin I I, Khomskii D I, Valentí R and Kuntscher C A 2018 Phys. Rev. B 97 020104 [23] Hermann V, Ebad-Allah J, Freund F, Jesche A, Tsirlin A A, Gegenwart P and Kuntscher C A 2019 Phys. Rev. B 99 235116 [24] Kurosaki Y, Shimizu Y, Miyagawa K, Kanoda K and Saito G 2005 Phys. Rev. Lett. 95 177001 [25] Shimizu Y, Hiramatsu T, Maesato M, Otsuka A, Yamochi H, Ono A, Itoh M, Yoshida M, Takigawa M, Yoshida Y and Saito G 2016 Phys. Rev. Lett. 117 107203 [26] Hu K, Zhou Z, Wei Y W, Li C K and Feng J 2018 Phys. Rev. B 98 100103 [27] Zhang Z, Yin Y, Ma X, Liu W, Li J, Jin F, Ji J, Wang Y, Wang X, Yu X and Zhang Q 2020 arXiv:2003.11479 [28] Jia Y T, Gong C S, Liu Y X, Zhao J-F, Dong C, Dai G Y, Li X D, Lei H C, Yu R Z, Zhang G M and Jin C Q 2020 Chin. Phys. Lett. 37 097404 [29] Prescher C and Prakapenka V B 2015 High Pressure Res. 35 223 [30] Toby B H and Von Dreele R B 2013 J. Appl. Cryst. 46 544 [31] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673 [32] Birch F 1947 Phys. Rev. 71 809 [33] Zhao H, Tan D, Tian Y, He Y, Li Y, Li X, Yang K, Chen B and Xiao W 2018 High Pressure Res. 38 232 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|