Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 067402    DOI: 10.1088/1674-1056/abf100
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Pressure-induced anomalous insulating behavior in frustrated iridate La3Ir3O11

Chun-Hua Chen(陈春华)1,2, Yong-Hui Zhou(周永惠)1,†, Ying Zhou(周颖)3, Yi-Fang Yuan(袁亦方)1,2, Chao An(安超)3, Xu-Liang Chen(陈绪亮)1, Zhao-Ming Tian(田召明)4, and Zhao-Rong Yang(杨昭荣)1,3,5,‡
1 Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China;
2 Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China;
3 Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China;
4 School of Physics, and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China;
5 High Magnetic Field Laboratory of Anhui Province, Hefei 230031, China
Abstract  The geometrically frustrated iridate La3Ir3O11 with strong spin-orbit coupling and fractional valence was recently predicted to be a quantum spin liquid candidate at ambient conditions. Here, we systematically investigate the evolution of structural and electronic properties of La3Ir3O11 under high pressure. Electrical transport measurements reveal an abnormal insulating behavior rather than metallization above a critical pressure Pc ~38.7 GPa. Synchrotron x-ray diffraction (XRD) experiments indicate the stability of the pristine cubic KSbO3-type structure up to 73.1 GPa. Nevertheless, when the pressure gradually increases across Pc, the bulk modulus gets enhanced and the pressure dependence of bond length dIr-Ir undergoes a slope change. Consistent with the XRD data, detailed analyses of Raman spectra reveal an abnormal redshift of Raman mode and a change of Raman intensity around Pc. Our results demonstrate that the pressure-induced insulating behavior in La3Ir3O11 can be assigned to the structural modification, such as the distortion of IrO6 octahedra. These findings will shed light on the emergent abnormal insulating behavior in other 5d iridates reported recently.
Keywords:  high pressure      5d iridates      semimetal-insulator transition      crystal structure  
Received:  21 February 2021      Revised:  05 March 2021      Accepted manuscript online:  23 March 2021
PACS:  74.62.Fj (Effects of pressure)  
  72.80.Ga (Transition-metal compounds)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  74.62.Bf (Effects of material synthesis, crystal structure, and chemical composition)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0305704 and 2016YFA0401804), the National Natural Science Foundation of China (Grant Nos. U1632275, U1932152, 11874362, 11704387, 11804344, 11804341, 11974016, U19A2093, and U1832209), the Natural Science Foundation of Anhui Province, China (Grant Nos. 1808085MA06, 2008085QA40, and 1908085QA18), the Users with Excellence Project of Hefei Center CAS (Grant No. 2020HSC-UE015), and the Collaborative Innovation Program of Hefei Science Center CAS (Grant No. 2020HSC-CIP014). A portion of this work was supported by the High Magnetic Field Laboratory of Anhui Province under Contract No. AHHM-FX-2020-02. Yonghui Zhou was supported by the Youth Innovation Promotion Association CAS (Grant No. 2020443).
Corresponding Authors:  Yong-Hui Zhou, Zhao-Rong Yang     E-mail:  yhzhou@hmfl.ac.cn;zryang@issp.ac.cn

Cite this article: 

Chun-Hua Chen(陈春华), Yong-Hui Zhou(周永惠), Ying Zhou(周颖), Yi-Fang Yuan(袁亦方), Chao An(安超), Xu-Liang Chen(陈绪亮), Zhao-Ming Tian(田召明), and Zhao-Rong Yang(杨昭荣) Pressure-induced anomalous insulating behavior in frustrated iridate La3Ir3O11 2021 Chin. Phys. B 30 067402

[1] Cao G and Schlottmann P 2018 Rep. Prog. Phys. 81 042502
[2] Pesin D and Balents L 2010 Nat. Phys. 6 376
[3] Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101
[4] Kim B J, Ohsumi H, Komesu T, Sakai S, Morita T, Takagi H and Arima T 2009 Science 323 1329
[5] Okamoto Y, Nohara M, Aruga-Katori H and Takagi H 2007 Phys. Rev. Lett. 99 137207
[6] Chaloupka J, Jackeli G and Khaliullin G 2010 Phys. Rev. Lett. 105 027204
[7] Choi S K, Coldea R, Kolmogorov A N, Lancaster T, Mazin I I, Blundell S J, Radaelli P G, Singh Y, Gegenwart P, Choi K R, Cheong S W, Baker P J, Stock C and Taylor J 2012 Phys. Rev. Lett. 108 127204
[8] Rau J G, Lee E K-H and Kee H-Y 2016 Annu. Rev. Condens. Matter Phys. 7 195
[9] Moon S J, Jin H, Kim K W, Choi W S, Lee Y S, Yu J, Cao G, Sumi A, Funakubo H, Bernhard C and Noh T W 2008 Phys. Rev. Lett. 101 226402
[10] Ramirez A P 1994 Annu. Rev. Mat. Sci. 24 453
[11] Abraham F, Trehoux J and Thomas D 1979 J. Less-Common Metals 63 57
[12] Kim B J, Jin H, Moon S J, Kim J Y, Park B G, Leem C S, Yu J, Noh T W, Kim C, Oh S J, Park J H, Durairaj V, Cao G and Rotenberg E 2008 Phys. Rev. Lett. 101 076402
[13] Abraham F, Trehoux J, Thomas D and Wagner F E 1982 J. Less-Common Metals 84 245
[14] Singh V and Pulikkotil J J 2017 Mater. Chem. Phys. 186 592
[15] Aoyama T, Emi K, Tabata C, Nambu Y, Nakao H, Yamauchi T and Ohgushi K 2019 J. Phys. Soc. Jpn. 88 093706
[16] Yang J, Wang J R, Zhen W L, Ma L, Ling L S, Tong W, Zhang C J, Pi L and Zhu W K 2019 Phys. Rev. B 100 205107
[17] Anderson P W 1987 Science 235 1196
[18] Chen C, Zhou Y, Chen X, Han T, An C, Zhou Y, Yuan Y, Zhang B, Wang S, Zhang R, Zhang L, Zhang C, Yang Z, DeLong L E and Cao G 2020 Phys. Rev. B 101 144102
[19] Haskel D, Fabbris G, Zhernenkov M, Kong P P, Jin C Q, Cao G and van Veenendaal M 2012 Phys. Rev. Lett. 109 027204
[20] Ding Y, Yang L, Chen C C, Kim H S, Han M J, Luo W, Feng Z, Upton M, Casa D, Kim J, Gog T, Zeng Z, Cao G, Mao H K and van Veenendaal M 2016 Phys. Rev. Lett. 116 216402
[21] Hermann V, Ebad-Allah J, Freund F, Pietsch I M, Jesche A, Tsirlin A A, Deisenhofer J, Hanfland M, Gegenwart P and Kuntscher C A 2017 Phys. Rev. B 96 195137
[22] Hermann V, Altmeyer M, Ebad-Allah J, Freund F, Jesche A, Tsirlin A A, Hanfland M, Gegenwart P, Mazin I I, Khomskii D I, Valentí R and Kuntscher C A 2018 Phys. Rev. B 97 020104
[23] Hermann V, Ebad-Allah J, Freund F, Jesche A, Tsirlin A A, Gegenwart P and Kuntscher C A 2019 Phys. Rev. B 99 235116
[24] Kurosaki Y, Shimizu Y, Miyagawa K, Kanoda K and Saito G 2005 Phys. Rev. Lett. 95 177001
[25] Shimizu Y, Hiramatsu T, Maesato M, Otsuka A, Yamochi H, Ono A, Itoh M, Yoshida M, Takigawa M, Yoshida Y and Saito G 2016 Phys. Rev. Lett. 117 107203
[26] Hu K, Zhou Z, Wei Y W, Li C K and Feng J 2018 Phys. Rev. B 98 100103
[27] Zhang Z, Yin Y, Ma X, Liu W, Li J, Jin F, Ji J, Wang Y, Wang X, Yu X and Zhang Q 2020 arXiv:2003.11479
[28] Jia Y T, Gong C S, Liu Y X, Zhao J-F, Dong C, Dai G Y, Li X D, Lei H C, Yu R Z, Zhang G M and Jin C Q 2020 Chin. Phys. Lett. 37 097404
[29] Prescher C and Prakapenka V B 2015 High Pressure Res. 35 223
[30] Toby B H and Von Dreele R B 2013 J. Appl. Cryst. 46 544
[31] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673
[32] Birch F 1947 Phys. Rev. 71 809
[33] Zhao H, Tan D, Tian Y, He Y, Li Y, Li X, Yang K, Chen B and Xiao W 2018 High Pressure Res. 38 232
[1] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[2] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[3] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[4] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[5] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[6] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[7] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[8] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[9] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[10] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
[11] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[12] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[13] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[14] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[15] Pressure-induced phase transitions in the ZrXY (X= Si, Ge, Sn;Y= S, Se, Te) family compounds
Qun Chen(陈群), Juefei Wu(吴珏霏), Tong Chen(陈统), Xiaomeng Wang(王晓梦), Chi Ding(丁弛), Tianheng Huang(黄天衡), Qing Lu(鲁清), and Jian Sun(孙建). Chin. Phys. B, 2022, 31(5): 056201.
No Suggested Reading articles found!