Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 017101    DOI: 10.1088/1674-1056/ac76ad
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Site selective 5f electronic correlations in β-uranium

Ruizhi Qiu(邱睿智)1,†, Liuhua Xie(谢刘桦)1,2, and Li Huang(黄理)3,‡
1 Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China;
2 School of Physical Science and Technology, Southwest University, Chongqing 400715, China;
3 Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, China
Abstract  We investigate the electronic structure of $\beta$-uranium, which has five nonequivalent atomic sites in its unit cell, by means of the density functional theory plus Hubbard-$U$ correction with $U$ from linear response calculation. It is found that the 5f electronic correlations in $\beta$-uranium are moderate. More interestingly, their strengths are site selective, depending on the local atomic environment of the present uranium atom. As a consequence, the occupation matrices and partial 5f density of states of $\beta$-uranium manifest site dependence. In addition, the complicate experimental structure of $\beta$-uranium could be well reproduced within this theoretical framework.
Keywords:  uranium      low-symmetry crystal structure      5f electronic correlation      site-selectivity      density-functional theory  
Received:  29 April 2022      Revised:  31 May 2022      Accepted manuscript online:  08 June 2022
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 22176181, 11874329, 11934020, and U1930121), the Foundation of the President of China Academy of Engineering Physics (Grant No. YZJJZQ2022011), and the Foundation of Science and Technology on Surface Physics and Chemistry Laboratory (Grant No. WDZC202101).
Corresponding Authors:  Ruizhi Qiu, Li Huang     E-mail:  qiuruizhi@caep.cn;huangli@caep.cn

Cite this article: 

Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理) Site selective 5f electronic correlations in β-uranium 2023 Chin. Phys. B 32 017101

[1] Moore K T and van der Laan G 2009 Rev. Mod. Phys. 81 235
[2] Zachariasen W H and Ellinger F H 1963 Acta Crystall. 16 777
[3] Zachariasen W H and Ellinger F H 1963 Acta Crystall. 16 369
[4] Lawson A C, Olsen C E, Richardson Jnr J W, Mueller M H and Lander G H 1988 Acta Crystall. B 44 89
[5] Söderlind P, Eriksson O, Johansson B, Wills J M and Boring A M 1995 Nature 374 524
[6] Zhu J X, Albers R C, Haule K, Kotliar G and Wills J M 2013 Nat. Commun. 4 2644
[7] Kotliar G, Savrasov S Y, Haule K, Oudovenko V S, Parcollet O and Marianetti C A 2006 Rev. Mod. Phys. 78 865
[8] Brito W H and Kotliar G 2019 Phys. Rev. B 99 125113
[9] Amadon B 2016 Phys. Rev. B 94 115148
[10] Qiu R, Ao B and Huang L 2020 Comput. Mater. Sci. 171 109270
[11] Donohue J and Einspahr H 1971 Acta Crystall. B 27 1740
[12] Li J, Ren Q, Lu C, Lu L, Dai Y and Liu B 2012 J. Alloys Compd. 516 139
[13] Beeler B, Deo C, Baskes M and Okuniewski M 2013 J. Nucl. Mater. 433 143
[14] Zhang H J, Li S N, Zheng J J, Li W D and Wang B T 2017 Chin. Phys. B 26 066104
[15] Cococcioni M and de Gironcoli S 2005 Phys. Rev. B 71 035105
[16] Huang L and Lu H 2019 Phys. Rev. B 99 045109
[17] Huang L and Lu H 2020 Phys. Rev. B 101 125123
[18] Liechtenstein A I, Anisimov V I and Zaanen J 1995 Phys. Rev. B 52 R5467
[19] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[20] Savrasov S Y and Kotliar G 2000 Phys. Rev. Lett. 84 3670
[21] Shick A B, Drchal V and Havela L 2005 Europhys. Lett. 69 588
[22] Shick A, Havela L, Kolorenč J, Drchal V, Gouder T and Oppeneer P M 2006 Phys. Rev. B 73 104415
[23] Dorado B, Freyss M, Amadon B, Bertolus M, Jomard G and Garcia P 2013 J. Phys.: Condens. Matter 25 333201
[24] Amadon B and Dorado B 2018 J. Phys.: Condens. Matter 30 405603
[25] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[26] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
[27] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Blöchl P E 1994 Phys. Rev. B 50 17953
[29] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[30] Meredig B, Thompson A, Hansen H A, Wolverton C and van de Walle A 2010 Phys. Rev. B 82 195128
[31] Qiu R, Xie L and Huang L 2021 arXiv:2104.12440 [cond-mat.str-el]
[32] Villars P 1997 Pearson's Handbook of Crystallographic Data for Intermediate Phases (Cleveland: American Society of Metals)
[33] Roof R B, Haire R G, Schiferl D, Schwalbe L A, Kmetko E A and Smith J L 1980 Science 207 1353
[34] Heathman S, Haire R G, Le Bihan T, Lindbaum A, Idiri M, Normile P, Li S, Ahuja R, Johansson B and Lander G H 2005 Science 309 110
[35] Huang L, Chen R and Lu H 2020 Phys. Rev. B 101 195123
[36] Heathman S, Le Bihan T, Yagoubi S, Johansson B and Ahuja R 2013 Phys. Rev. B 87 214111
[1] Atomic simulations of primary irradiation damage in U-Mo-Xe system
Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新). Chin. Phys. B, 2023, 32(3): 036101.
[2] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[3] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[4] Conformational change-modulated spin transport at single-molecule level in carbon systems
Yandong Guo(郭艳东), Xue Zhao(赵雪), Hongru Zhao(赵鸿儒), Li Yang(杨丽), Liyan Lin(林丽艳), Yue Jiang(姜悦), Dan Ma(马丹), Yuting Chen(陈雨婷), and Xiaohong Yan(颜晓红). Chin. Phys. B, 2022, 31(12): 127201.
[5] Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction
Jing Zeng(曾晶), Ke-Qiu Chen(陈克求), Yanhong Zhou(周艳红). Chin. Phys. B, 2020, 29(8): 088503.
[6] High-resolution angle-resolved photoemission study of oxygen adsorbed Fe/MgO(001)
Mingtian Zheng, Eike F. Schwier, Hideaki Iwasawa, Kenya Shimada. Chin. Phys. B, 2020, 29(6): 067901.
[7] Defect engineering on the electronic and transport properties of one-dimensional armchair phosphorene nanoribbons
Huakai Xu(许华慨), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(3): 037302.
[8] Direct observation of the f-c hybridization in the ordered uranium films on W(110)
Qiuyun Chen(陈秋云), Shiyong Tan(谭世勇), Wei Feng(冯卫), Lizhu Luo(罗丽珠), Xiegang Zhu(朱燮刚), Xinchun Lai(赖新春). Chin. Phys. B, 2019, 28(7): 077404.
[9] Ab initio study of H/O trapping and clustering on U/Al interface
Wenhong Ouyang(欧阳文泓), Wensheng Lai(赖文生), Zhengjun Zhang(张政军). Chin. Phys. B, 2018, 27(9): 097303.
[10] Electronic structures of impurities and point defects in semiconductors
Yong Zhang(张勇). Chin. Phys. B, 2018, 27(11): 117103.
[11] Spin-dependent transport characteristics of nanostructures based on armchair arsenene nanoribbons
Kai-Wei Yang(杨开巍), Ming-Jun Li(李明君), Xiao-Jiao Zhang(张小姣), Xin-Mei Li(李新梅), Yong-Li Gao(高永立), Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2017, 26(9): 098509.
[12] Vacancy effect on the doping of silicon nanowires:A first-principles study
Liu Yang (刘阳), Liang Pei (梁培), Shu Hai-Bo (舒海波), Cao Dan (曹丹), Dong Qian-Min (董前民), Wang Le (王乐). Chin. Phys. B, 2014, 23(6): 067304.
[13] Structural, electronic, optical, elastic properties and Born effective charges of monoclinic HfO2 from first-principles calculations
Liu Qi-Jun (刘其军), Zhang Ning-Chao (张宁超), Liu Fu-Sheng (刘福生), Liu Zheng-Tang (刘正堂). Chin. Phys. B, 2014, 23(4): 047101.
[14] Density-functional theory study of the effect of pressure on the elastic properties of CaB6
Han Han (韩晗). Chin. Phys. B, 2013, 22(7): 077101.
[15] First-principles study of Ar adsorptions on the (111) surfaces of Pd, Pt, Cu, and Rh
Niu Wen-Xia (牛纹霞), Zhang Hong (张红), Gong Min (龚敏), Cheng Xin-Lu (程新路). Chin. Phys. B, 2013, 22(6): 066802.
No Suggested Reading articles found!