Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 067401    DOI: 10.1088/1674-1056/abdea5
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Temperature and doping dependent flat-band superconductivity on the Lieb-lattice

Feng Xu(徐峰)1,2,†, Lei Zhang(张磊)1,2, and Li-Yun Jiang(姜立运)1,2
1 School of Physics and Telecommunication Engineering, Shaanxi University of Technology, Hanzhong 723001, China;
2 Institute of Graphene at Shaanxi Key Laboratory of Catalysis, Shaanxi University of technology, Hanzhong 723001, China
Abstract  We consider the superconducting properties of Lieb lattice, which produces a flat-band energy spectrum in the normal state under the strong electron-electron correlation. Firstly, we show the hole-doping dependent superconducting order amplitude with various electron-electron interaction strengths in the zero-temperature limit. Secondly, we obtain the superfluid weight and Berezinskii-Kosterlitz-Thouless (BKT) transition temperature with a lightly doping level. The large ratio between the gap-opening temperature and BKT transition temperature shows similar behavior to the pseudogap state in high-Tc superconductors. The BKT transition temperature versus doping level exhibits a dome-like shape in resemblance to the superconducting dome observed in the high-Tc superconductors. However, unlike the exponential dependence of Tc on the electron-electron interaction strength in the conventional high-Tc superconductors, the BKT transition temperature for a flat band system depends linearly on the electron-electron interaction strength. We also show the doping-dependent superconductivity on a lattice with the staggered hoping parameter in the end. Our predictions are amenable to verification in the ultracold atoms experiment and promote the understanding of the anomalous behavior of the superfluid weight in the high-Tc superconductors.
Keywords:  flat-band superconductivity      strong electron-electron interaction      superfluid weight      Berezinskii-Kosterlitz-Thouless (BKT) transition temperature  
Received:  10 September 2020      Revised:  10 December 2020      Accepted manuscript online:  22 January 2021
PACS:  74.20.-z (Theories and models of superconducting state)  
  74.20.Mn (Nonconventional mechanisms)  
  74.25.Bt (Thermodynamic properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11804213), the Scientific Research Program Funded by Shaanxi Provincial Education Department (Grant No. 20JK0573), the Scientific Research Foundation of Shaanxi University of Technology (Grant No. SLGRCQD2006), and the Natural Science Basic Research Program of Shaanxi (Grant No. 2021JQ-748).
Corresponding Authors:  Feng Xu     E-mail:  xufengxlx@snut.edu.cn

Cite this article: 

Feng Xu(徐峰), Lei Zhang(张磊), and Li-Yun Jiang(姜立运) Temperature and doping dependent flat-band superconductivity on the Lieb-lattice 2021 Chin. Phys. B 30 067401

[1] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi E, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[2] Chebrolu N R, Chittari B L and Jung J 2019 Phys. Rev. B 99 235417
[3] Hu X, Hyart T, Pikulin D I and Rossi E 2019 Phys. Rev. Lett. 123 237002
[4] Roy B and Juricic V 2019 Phys. Rev. B 99 121407(R)
[5] Julku A, Peltonen T J, Liang L, Heikkila T T and Torma P 2020 Phys. Rev. B 101 060505(R)
[6] Kopnin N B, Heikkila T T and Volovik G E 2011 Phys. Rev. B 83 220503(R)
[7] Iglovikov V I, Hebert F, Batrouni G G and Scalettar R T 2014 Phys. Rev. B 90 094506
[8] Lieb E H 1989 Phys. Rev. Lett. 62 1201
[9] Mielke A 1991 J. Phys. A 24 L73,1991 J. Phys. A 24 3311
[10] Tasaki H 1992 Phys. Rev. Lett. 69 1608
[11] Tasaki H 1998 Prog. Theor. Phys. 99 489
[12] Kopnin N B, Heikkila T T and Volovik G E 2011 Phys. Rev. B 83 220503(R)
[13] Wang H, Yu S L and Li J X 2014 Phys. Lett. A 378 3360
[14] Julku A, Peotta S, Vanhala T I, Kim D H and Torma P 2016 Phys. Rev. Lett. 117 045303
[15] Huhtinen K F,Tylutki M, Kumar P, Vanhala T I, Peorra S and Torma P 2018 Phys. Rev. B 97 214503
[16] Tylutki M and Torma P 2018 Phys. Rev. B 98 094513
[17] Sun K, Gu Z, Katsura H and Sarma S D 2011 Phys. Rev. Lett. 106 236803
[18] Tang E, Mei J W and Wen X G 2011 Phys. Rev. Lett. 106 236802
[19] Neupert T, Santos L, Chamon C and Mudry C 2011 Phys. Rev. Lett. 106 236804
[20] Roy R 2014 Phys. Rev. B 90 165139
[21] Slot M R, Gardenier T S, Jacobse P H, van Miert G C P, Kempkes S N, Zevenhuizen S J M, Smith C M, Vanmaekelbergh D and Swart I 2017 Nature Physics 13 672
[22] Lin Z, Choi J H, Zhang Q, Qin W, Yi S, Wang P, Li L, Wang Y, Zhang H, Sun Z, Wei L, Zhang S, Guo T, Lu Q, Cho J H, Zeng C and Zhang Z 2018 Phys. Rev. Lett. 121 096401
[23] Xia S, Ramachandran A, Xia S, Li D, Liu X, Tang L, Hu Y, Song D, Xu J, Leykam D, Flach S and Chen Z 2018 Phys. Rev. Lett. 121 263902
[24] Saito Y, Ge J, Watanabe K, Taniguchi T and Young A F 2018 Nature Physics 14 3681
[25] Kauooila V J, Aikebaier F and Heikkila T T 2016 Phys. Rev. B 93 214505
[26] Xu F, Chou P, Chung C H, Lee T K and Mou C Y 2018 Phys. Rev. B 98 205103
[27] Xu F and Zhang L 2019 Chin. Phys. B 28 117403
[28] Berezinskii V L 1972 Sov. Phys. JETP 34 610
[29] Kosterlitz J M and Thouless D J 1973 J. Phys. C 6 1181
[30] Nelson D R and Kosterlitz J M 1977 Phys. Rev. Lett. 39 1201
[31] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
[32] Edegger B, Muthukumar V N and Gros C 2007 Adances in Physics 56 927
[33] Scalapino D J, White S R and Zhang S C 1992 Phys. Rev. Lett. 68 2830
[34] Scalapino D J, White S R and Zhang S C 1993 Phys. Rev. B 47 7996
[35] Zhong Y, Lu H and Luo H 2016 Eur. Phys. J. B 89 28
[36] Shao S, Zhou K and Zhang Z 2019 Chin. Phys. B 28 070501
[1] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[2] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[3] Majorana zero modes, unconventional real-complex transition, and mobility edges in a one-dimensional non-Hermitian quasi-periodic lattice
Shujie Cheng(成书杰) and Xianlong Gao(高先龙). Chin. Phys. B, 2022, 31(1): 017401.
[4] Superconductivity in octagraphene
Jun Li(李军) and Dao-Xin Yao(姚道新). Chin. Phys. B, 2022, 31(1): 017403.
[5] Josephson current in an irradiated Weyl semimetal junction
Han Wang(王含) and Rui Shen(沈瑞). Chin. Phys. B, 2021, 30(7): 077406.
[6] Superfluid states in α-T3 lattice
Yu-Rong Wu(吴玉容) and Yi-Cai Zhang(张义财). Chin. Phys. B, 2021, 30(6): 060306.
[7] Quasiparticle interference testing the possible pairing symmetry in Sr2RuO4
Cong-Cong Zhang(张聪聪), Jin-Hua Sun(孙金华), Yang Yang(杨阳), Wan-Sheng Wang(王万胜). Chin. Phys. B, 2020, 29(6): 067401.
[8] Josephson effect in the strontium titanate/lanthanum aluminate junction
Xing Yang(阳星), Jie Chen(陈杰), Yabin Yu(余亚斌), Quanhui Liu(刘全慧). Chin. Phys. B, 2019, 28(9): 097401.
[9] Magnetic field analysis in a diamond anvil cell for Meissner effect measurement by using the diamond NV- center
Lin Zhao(赵琳), Donghui Yue(岳冬辉), Cailong Liu(刘才龙), Min Wang(王敏), Yonghao Han(韩永昊), Chunxiao Gao(高春晓). Chin. Phys. B, 2019, 28(3): 030702.
[10] Explicit forms of zero modes in symmetric interacting Kitaev chain without and with dimerization
Yiming Wang(王一鸣), Zhidan Li(李志聃), Qiang Han(韩强). Chin. Phys. B, 2018, 27(6): 067101.
[11] Topological phase diagrams and Majorana zero modes of the Kitaev ladder and tube
Yiming Wang(王一鸣), Zhidan Li(李志聃), Qiang Han(韩强). Chin. Phys. B, 2018, 27(4): 047401.
[12] Comparison of band structure and superconductivity in FeSe0.5Te0.5 and FeS
Yang Yang(杨阳), Shi-Quan Feng(冯世全), Yuan-Yuan Xiang(向圆圆), Hong-Yan Lu(路洪艳), Wan-Sheng Wang(王万胜). Chin. Phys. B, 2017, 26(12): 127401.
[13] Topological phase transition in a ladder of the dimerized Kitaev superconductor chains
Bo-Zhen Zhou(周博臻), Bin Zhou(周斌). Chin. Phys. B, 2016, 25(10): 107401.
[14] Topological phase boundary in a generalized Kitaev model
Da-Ping Liu(刘大平). Chin. Phys. B, 2016, 25(5): 057101.
[15] Spin, charge, and orbital orderings in iron-based superconductors
Jiang Qing (江庆), Kang Yao-Tai (康耀太), Yao Dao-Xin (姚道新). Chin. Phys. B, 2013, 22(8): 087402.
No Suggested Reading articles found!