Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 048102    DOI: 10.1088/1674-1056/abe22c
RAPID COMMUNICATION Prev   Next  

Intercalation of germanium oxide beneath large-area and high-quality epitaxial graphene on Ir(111) substrate

Xueyan Wang(王雪艳)1,†, Hui Guo(郭辉)1,†, Jianchen Lu(卢建臣)1, Hongliang Lu(路红亮)1,2,‡, Xiao Lin(林晓)1,2, Chengmin Shen(申承民)1,2, Lihong Bao(鲍丽宏)1,2,3, Shixuan Du(杜世萱)1,2,3, and Hong-Jun Gao(高鸿钧)1,2,3
1 Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China; 2 CAS Center for Excellence in Topological Quantum Computation, Chinese Academy of Sciences, Beijing 100190, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Epitaxial growth on transition metal surfaces is an effective way to prepare large-area and high-quality graphene. However, the strong interaction between graphene and metal substrates suppresses the intrinsic excellent properties of graphene and the conductive metal substrates also hinder its applications in electronics. Here we demonstrate the decoupling of graphene from metal substrates by germanium oxide intercalation. Germanium is firstly intercalated into the interface between graphene and Ir(111) substrate. Then oxygen is subsequently intercalated, leading to the formation of a GeOx layer, which is confirmed by x-ray photoelectron spectroscopy. Low-energy electron diffraction and scanning tunneling microscopy studies show intact carbon lattice of graphene after the GeOx intercalation. Raman characterizations reveal that the intercalated layer effectively decouples graphene from the Ir substrate. The transport measurements demonstrate that the GeOx layer can act as a tunneling barrier in the fabricated large-area high-quality vertical graphene/GeOx/Ir heterostructure.
Keywords:  graphene      intercalation      heterostructure      tunneling barrier  
Received:  24 December 2020      Revised:  19 January 2021      Accepted manuscript online:  02 February 2021
PACS:  81.05.ue (Graphene)  
  71.20.Tx (Fullerenes and related materials; intercalation compounds)  
  79.60.Jv (Interfaces; heterostructures; nanostructures)  
  73.43.Jn (Tunneling)  
Fund: Project supported by the National Key Research & Development Program of China (Grant Nos. 2019YFA0308500, 2016YFA0202300, and 2018YFA0305800), the National Natural Science Foundation of China (Grant Nos. 61888102, 61925111, and 21661132006), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB30000000 and XDB28000000), and the CAS Key Laboratory of Vacuum Physics.
Corresponding Authors:  These authors contributed equally to this work. Corresponding author. E-mail: luhl@ucas.ac.cn   

Cite this article: 

Xueyan Wang(王雪艳), Hui Guo(郭辉), Jianchen Lu(卢建臣), Hongliang Lu(路红亮), Xiao Lin(林晓), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧) Intercalation of germanium oxide beneath large-area and high-quality epitaxial graphene on Ir(111) substrate 2021 Chin. Phys. B 30 048102

1 Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
2 Georgiou T, Jalil R, Belle B D, Britnell L, Gorbachev R V, Morozov S V, Kim Y J, Gholinia A, Haigh S J, Makarovsky O, Eaves L, Ponomarenko L A, Geim A K, Novoselov K S and Mishchenko A 2013 Nat. Nanotechnol. 8 100
3 Liu Y, Sheng J, Wu H, He Q, Cheng H C, Shakir M I, Huang Y and Duan X 2016 Adv. Mater. 28 4120
4 Yang H, Heo J, Park S, Song H J, Seo D H, Byun K E, Kim P, Yoo I, Chung H J and Kim K 2012 Science 336 1140
5 An X, Liu F, Jung Y J and Kar S 2013 Nano Lett. 13 909
6 Zeng L H, Wang M Z, Hu H, Nie B, Yu Y Q, Wu C Y, Wang L, Hu J G, Xie C, Liang F X and Luo L B 2013 ACS Appl. Mater. Interfaces 5 9362
7 Yang F, Cong H, Yu K, Zhou L, Wang N, Liu Z, Li C, Wang Q and Cheng B 2017 ACS Appl. Mater. Interfaces 9 13422
8 Chung K, Lee C H and Yi G C 2010 Science 330 655
9 Que Y D, Xiao W D, Fei X M, Chen H, Huang L, Du S X and Gao H J 2014 Appl. Phys. Lett. 104 093110
10 Xu W Y, Huang L, Que Y D, Li E, Zhang H G, Lin X, Wang Y L, Du S X and Gao H J 2014 Chin. Phys. B 23 098101
11 Gao M, Pan Y, Huang L, Hu H, Zhang L Z, Guo H M, Du S X and Gao H J 2011 Appl. Phys. Lett. 98 033101
12 Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F and Gao H J 2009 Adv. Mater. 21 2777
13 N'Diaye A T, Coraux J, Plasa T N, Busse C and Michely T 2008 New J. Phys. 10 043033
14 Gao L, Guest J R and Guisinger N P 2010 Nano Lett. 10 3512
15 Odahara G, Otani S, Oshima C, Suzuki M, Yasue T and Koshikawa T 2011 Surf. Sci. 605 1095
16 Gierz I, Suzuki T, Weitz R T, Lee D S, Krauss B, Riedl C, Starke U, Höchst H, Smet J H, Ast C R and Kern K 2010 Phys. Rev. B 81 235408
17 Mao J H, Huang L, Pan Y, Gao M, He J F, Zhou H T, Guo H M, Tian Y, Zou Q, Zhang L Z, Zhang H G, Wang Y L, Du S X, Zhou X J, Castro Neto A H and Gao H J 2012 Appl. Phys. Lett. 100 093101
18 Meng L, Wu R T, Zhou H T, Li G, Zhang Y, Li L F, Wang Y L and Gao H J 2012 Appl. Phys. Lett. 100 083101
19 Li L F, Wang Y L, Meng L, Wu R T and Gao H J 2013 Appl. Phys. Lett. 102 093106
20 Petrovic M, Srut Rakic I, Runte S, Busse C, Sadowski J T, Lazic P, Pletikosic I, Pan Z H, Milun M, Pervan P, Atodiresei N, Brako R, Sokcevic D, Valla T, Michely T and Kralj M 2013 Nat. Commun. 4 2772
21 Sutter P, Sadowski J T and Sutter E A 2010 J. Am. Chem. Soc. 132 8175
22 Lizzit S, Larciprete R, Lacovig P, Dalmiglio M, Orlando F, Baraldi A, Gammelgaard L, Barreto L, Bianchi M, Perkins E and Hofmann P 2012 Nano Lett. 12 4503
23 Dahal A and Batzill M 2015 Sci. Rep. 5 11378
24 Al Balushi Z Y, Wang K, Ghosh R K, Vila R A, Eichfeld S M, Caldwell J D, Qin X, Lin Y C, DeSario P A, Stone G, Subramanian S, Paul D F, Wallace R M, Datta S, Redwing J M and Robinson J A 2016 Nat. Mater. 15 1166
25 Schulzendorf M, Hinaut A, Kisiel M, Johr R, Pawlak R, Restuccia P, Meyer E, Righi M C and Glatzel T 2019 ACS Nano 13 5485
26 Li G, Zhang L, Xu W, Pan J, Song S, Zhang Y, Zhou H, Wang Y, Bao L, Zhang Y Y, Du S, Ouyang M, Pantelides S T and Gao H J 2018 Adv. Mater. 30 1804650
27 Larciprete R, Lacovig P, Orlando F, Dalmiglio M, Omiciuolo L, Baraldi A and Lizzit S 2015 Nanoscale 7 12650
28 Guo H, Wang X Y, Huang L, Jin X, Yang Z Z, Zhou Z, Hu H, Zhang Y Y, Lu H L, Zhang Q H, Shen C M, Lin X, Gu L, Dai Q, Bao L H, Du S X, Hofer W, Pantelides S T and Gao H J 2020 Nano Lett. 20 8584
29 Feng Y, Trainer D J and Chen K 2017 J. Phys. D: Appl. Phys. 50 155101
30 Tombros N, Jozsa C, Popinciuc M, Jonkman H T and van Wees B J 2007 Nature 448 571
31 Guo H, Wang X Y, Bao D L, Lu H L, Zhang Y Y, Li G, Wang Y L, Du S X and Gao H J 2019 Chin. Phys. B 28 078103
32 Chae S, Lee J, Mengle K A, Heron J T and Kioupakis E 2019 Appl. Phys. Lett. 114 102104
33 Goldoni A and Modesti S 1996 Phys. Rev. B 54 11340
34 Mullet C H, Stenger B H, Durand A M, Morad J A, Sato Y, Poppenheimer E C and Chiang S 2017 Surf. Sci. 666 96
35 Jin S X, Li N, Cui H and Wang C X 2013 Nano Energy 2 1128
36 Oh J and Campbell J C 2004 J. Electron. Mater. 33 364
37 Swaminathan S and McIntyre P C 2010 ECS Trans. 33 455
38 Swineharf D F 1962 J. Chem. Educ. 39 333
39 Murakami H, Fujioka T, Ohta A, Bando T, Higashi S and Miyazaki S 2010 ECS Trans. 33 253
40 Starodub E, Bostwick A, Moreschini L, Nie S, Gabaly F E, McCarty K F and Rotenberg E 2011 Phys. Rev. B 83 125428
41 Casiraghi C, Pisana S, Novoselov K S, Geim A K and Ferrari A C 2007 Appl. Phys. Lett. 91 233108
42 Röhrl J, Hundhausen M, Emtsev K V, Seyller T, Graupner R and Ley L 2008 Appl. Phys. Lett. 92 201918
43 Sutter P W, Flege J I and Sutter E A 2008 Nat. Mater. 7 406
44 Zabel J, Nair R R, Ott A, Georgiou T, Geim A K, Novoselov K S and Casiraghi C 2012 Nano Lett. 12 617
45 Simmons J G 1963 J. Appl. Phys. 34 1793
46 Dorneles L S, Schaefer D M, Carara M and Schelp L F 2003 Appl. Phys. Lett. 82 2832
47 Chen W, Liang R, Zhang S, Liu Y, Cheng W, Sun C and Xu J 2019 Nano Research 13 127
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[6] MoS2/Si tunnel diodes based on comprehensive transfer technique
Yi Zhu(朱翊), Hongliang Lv(吕红亮), Yuming Zhang(张玉明), Ziji Jia(贾紫骥), Jiale Sun(孙佳乐), Zhijun Lyu(吕智军), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(1): 018501.
[7] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[8] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[9] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
[10] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[11] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[12] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[13] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[14] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[15] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
No Suggested Reading articles found!