|
|
Intercalation of germanium oxide beneath large-area and high-quality epitaxial graphene on Ir(111) substrate |
Xueyan Wang(王雪艳)1,†, Hui Guo(郭辉)1,†, Jianchen Lu(卢建臣)1, Hongliang Lu(路红亮)1,2,‡, Xiao Lin(林晓)1,2, Chengmin Shen(申承民)1,2, Lihong Bao(鲍丽宏)1,2,3, Shixuan Du(杜世萱)1,2,3, and Hong-Jun Gao(高鸿钧)1,2,3 |
1 Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China; 2 CAS Center for Excellence in Topological Quantum Computation, Chinese Academy of Sciences, Beijing 100190, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract Epitaxial growth on transition metal surfaces is an effective way to prepare large-area and high-quality graphene. However, the strong interaction between graphene and metal substrates suppresses the intrinsic excellent properties of graphene and the conductive metal substrates also hinder its applications in electronics. Here we demonstrate the decoupling of graphene from metal substrates by germanium oxide intercalation. Germanium is firstly intercalated into the interface between graphene and Ir(111) substrate. Then oxygen is subsequently intercalated, leading to the formation of a GeOx layer, which is confirmed by x-ray photoelectron spectroscopy. Low-energy electron diffraction and scanning tunneling microscopy studies show intact carbon lattice of graphene after the GeOx intercalation. Raman characterizations reveal that the intercalated layer effectively decouples graphene from the Ir substrate. The transport measurements demonstrate that the GeOx layer can act as a tunneling barrier in the fabricated large-area high-quality vertical graphene/GeOx/Ir heterostructure.
|
Received: 24 December 2020
Revised: 19 January 2021
Accepted manuscript online: 02 February 2021
|
PACS:
|
81.05.ue
|
(Graphene)
|
|
71.20.Tx
|
(Fullerenes and related materials; intercalation compounds)
|
|
79.60.Jv
|
(Interfaces; heterostructures; nanostructures)
|
|
73.43.Jn
|
(Tunneling)
|
|
Fund: Project supported by the National Key Research & Development Program of China (Grant Nos. 2019YFA0308500, 2016YFA0202300, and 2018YFA0305800), the National Natural Science Foundation of China (Grant Nos. 61888102, 61925111, and 21661132006), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB30000000 and XDB28000000), and the CAS Key Laboratory of Vacuum Physics. |
Corresponding Authors:
†These authors contributed equally to this work. ‡Corresponding author. E-mail: luhl@ucas.ac.cn
|
Cite this article:
Xueyan Wang(王雪艳), Hui Guo(郭辉), Jianchen Lu(卢建臣), Hongliang Lu(路红亮), Xiao Lin(林晓), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧) Intercalation of germanium oxide beneath large-area and high-quality epitaxial graphene on Ir(111) substrate 2021 Chin. Phys. B 30 048102
|
1 Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 2 Georgiou T, Jalil R, Belle B D, Britnell L, Gorbachev R V, Morozov S V, Kim Y J, Gholinia A, Haigh S J, Makarovsky O, Eaves L, Ponomarenko L A, Geim A K, Novoselov K S and Mishchenko A 2013 Nat. Nanotechnol. 8 100 3 Liu Y, Sheng J, Wu H, He Q, Cheng H C, Shakir M I, Huang Y and Duan X 2016 Adv. Mater. 28 4120 4 Yang H, Heo J, Park S, Song H J, Seo D H, Byun K E, Kim P, Yoo I, Chung H J and Kim K 2012 Science 336 1140 5 An X, Liu F, Jung Y J and Kar S 2013 Nano Lett. 13 909 6 Zeng L H, Wang M Z, Hu H, Nie B, Yu Y Q, Wu C Y, Wang L, Hu J G, Xie C, Liang F X and Luo L B 2013 ACS Appl. Mater. Interfaces 5 9362 7 Yang F, Cong H, Yu K, Zhou L, Wang N, Liu Z, Li C, Wang Q and Cheng B 2017 ACS Appl. Mater. Interfaces 9 13422 8 Chung K, Lee C H and Yi G C 2010 Science 330 655 9 Que Y D, Xiao W D, Fei X M, Chen H, Huang L, Du S X and Gao H J 2014 Appl. Phys. Lett. 104 093110 10 Xu W Y, Huang L, Que Y D, Li E, Zhang H G, Lin X, Wang Y L, Du S X and Gao H J 2014 Chin. Phys. B 23 098101 11 Gao M, Pan Y, Huang L, Hu H, Zhang L Z, Guo H M, Du S X and Gao H J 2011 Appl. Phys. Lett. 98 033101 12 Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F and Gao H J 2009 Adv. Mater. 21 2777 13 N'Diaye A T, Coraux J, Plasa T N, Busse C and Michely T 2008 New J. Phys. 10 043033 14 Gao L, Guest J R and Guisinger N P 2010 Nano Lett. 10 3512 15 Odahara G, Otani S, Oshima C, Suzuki M, Yasue T and Koshikawa T 2011 Surf. Sci. 605 1095 16 Gierz I, Suzuki T, Weitz R T, Lee D S, Krauss B, Riedl C, Starke U, Höchst H, Smet J H, Ast C R and Kern K 2010 Phys. Rev. B 81 235408 17 Mao J H, Huang L, Pan Y, Gao M, He J F, Zhou H T, Guo H M, Tian Y, Zou Q, Zhang L Z, Zhang H G, Wang Y L, Du S X, Zhou X J, Castro Neto A H and Gao H J 2012 Appl. Phys. Lett. 100 093101 18 Meng L, Wu R T, Zhou H T, Li G, Zhang Y, Li L F, Wang Y L and Gao H J 2012 Appl. Phys. Lett. 100 083101 19 Li L F, Wang Y L, Meng L, Wu R T and Gao H J 2013 Appl. Phys. Lett. 102 093106 20 Petrovic M, Srut Rakic I, Runte S, Busse C, Sadowski J T, Lazic P, Pletikosic I, Pan Z H, Milun M, Pervan P, Atodiresei N, Brako R, Sokcevic D, Valla T, Michely T and Kralj M 2013 Nat. Commun. 4 2772 21 Sutter P, Sadowski J T and Sutter E A 2010 J. Am. Chem. Soc. 132 8175 22 Lizzit S, Larciprete R, Lacovig P, Dalmiglio M, Orlando F, Baraldi A, Gammelgaard L, Barreto L, Bianchi M, Perkins E and Hofmann P 2012 Nano Lett. 12 4503 23 Dahal A and Batzill M 2015 Sci. Rep. 5 11378 24 Al Balushi Z Y, Wang K, Ghosh R K, Vila R A, Eichfeld S M, Caldwell J D, Qin X, Lin Y C, DeSario P A, Stone G, Subramanian S, Paul D F, Wallace R M, Datta S, Redwing J M and Robinson J A 2016 Nat. Mater. 15 1166 25 Schulzendorf M, Hinaut A, Kisiel M, Johr R, Pawlak R, Restuccia P, Meyer E, Righi M C and Glatzel T 2019 ACS Nano 13 5485 26 Li G, Zhang L, Xu W, Pan J, Song S, Zhang Y, Zhou H, Wang Y, Bao L, Zhang Y Y, Du S, Ouyang M, Pantelides S T and Gao H J 2018 Adv. Mater. 30 1804650 27 Larciprete R, Lacovig P, Orlando F, Dalmiglio M, Omiciuolo L, Baraldi A and Lizzit S 2015 Nanoscale 7 12650 28 Guo H, Wang X Y, Huang L, Jin X, Yang Z Z, Zhou Z, Hu H, Zhang Y Y, Lu H L, Zhang Q H, Shen C M, Lin X, Gu L, Dai Q, Bao L H, Du S X, Hofer W, Pantelides S T and Gao H J 2020 Nano Lett. 20 8584 29 Feng Y, Trainer D J and Chen K 2017 J. Phys. D: Appl. Phys. 50 155101 30 Tombros N, Jozsa C, Popinciuc M, Jonkman H T and van Wees B J 2007 Nature 448 571 31 Guo H, Wang X Y, Bao D L, Lu H L, Zhang Y Y, Li G, Wang Y L, Du S X and Gao H J 2019 Chin. Phys. B 28 078103 32 Chae S, Lee J, Mengle K A, Heron J T and Kioupakis E 2019 Appl. Phys. Lett. 114 102104 33 Goldoni A and Modesti S 1996 Phys. Rev. B 54 11340 34 Mullet C H, Stenger B H, Durand A M, Morad J A, Sato Y, Poppenheimer E C and Chiang S 2017 Surf. Sci. 666 96 35 Jin S X, Li N, Cui H and Wang C X 2013 Nano Energy 2 1128 36 Oh J and Campbell J C 2004 J. Electron. Mater. 33 364 37 Swaminathan S and McIntyre P C 2010 ECS Trans. 33 455 38 Swineharf D F 1962 J. Chem. Educ. 39 333 39 Murakami H, Fujioka T, Ohta A, Bando T, Higashi S and Miyazaki S 2010 ECS Trans. 33 253 40 Starodub E, Bostwick A, Moreschini L, Nie S, Gabaly F E, McCarty K F and Rotenberg E 2011 Phys. Rev. B 83 125428 41 Casiraghi C, Pisana S, Novoselov K S, Geim A K and Ferrari A C 2007 Appl. Phys. Lett. 91 233108 42 Röhrl J, Hundhausen M, Emtsev K V, Seyller T, Graupner R and Ley L 2008 Appl. Phys. Lett. 92 201918 43 Sutter P W, Flege J I and Sutter E A 2008 Nat. Mater. 7 406 44 Zabel J, Nair R R, Ott A, Georgiou T, Geim A K, Novoselov K S and Casiraghi C 2012 Nano Lett. 12 617 45 Simmons J G 1963 J. Appl. Phys. 34 1793 46 Dorneles L S, Schaefer D M, Carara M and Schelp L F 2003 Appl. Phys. Lett. 82 2832 47 Chen W, Liang R, Zhang S, Liu Y, Cheng W, Sun C and Xu J 2019 Nano Research 13 127 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|