CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics |
Xiaohua Li(李晓华)1, Baoji Wang(王宝基)1,†, and Sanhuang Ke(柯三黄)2 |
1 School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China; 2 MOE Key Laboratory of Microstructured Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China |
|
|
Abstract Converting solar energy into electric power or hydrogen fuel is a promising means to obtain renewable green energy. Here, we design a two-dimensional blue phosphorene (BlueP)/MoSi$_2$N$_4$ van der Waals heterostructure (vdWH) and investigate its potential application in photocatalysis and photovoltaics using first-principles calculations. We find that the BlueP/MoSi$_2$N$_4$ vdWH possesses type-II band structure with a large build-in electric field, thus endowing it with a potential ability to separate photogenerated electron-hole pairs. The calculated band-edge positions show that the heterostructure is a very promising water-splitting photocatalyst. Its solar-to-hydrogen efficiency ($\eta_{ \text{STH}}$) can reach up to 15.8%, which is quite promising for commercial applications. Furthermore, the BlueP/MoSi$_2$N$_4$ vdWH shows remarkably light absorption capacity and distinguished maximum power conversion efficiency ($\eta_{\text{PCE}}$) up to 10.61%. Remarkably, its $\eta_{\text{PCE}}$ can be further enhanced by the external strain: the $\eta_{\text{PCE}}$ of 21.20% can be obtained under a 4% tensile strain. Finally, we determine that adjusting the number of the BlueP sublayer is another effective method to modulate the band gaps and band alignments of the heterostructures. These theoretical findings indicate that BlueP/MoSi$_2$N$_4$ vdWH is a promising candidate for photocatalyst and photovoltaic device.
|
Received: 19 April 2022
Revised: 07 August 2022
Accepted manuscript online: 23 September 2022
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
71.20.Nr
|
(Semiconductor compounds)
|
|
74.78.Fk
|
(Multilayers, superlattices, heterostructures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11374226), the Fundamental Research Funds for the Universities of Henan Province of China (Grant No. NSFRF200331), the Foundation of Henan Educational Committee (Grant No. 20A140013), as well as by the High-performance Grid Computing Platform of Henan Polytechnic University. |
Corresponding Authors:
Baoji Wang
E-mail: wbj@hpu.edu.cn
|
Cite this article:
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄) Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics 2023 Chin. Phys. B 32 027104
|
[1] Hou H and Zhang X 2020 Chem. Eng. J. 395 125030 [2] Xie Z, Peng Y, Yu L, Xing C, Qiu M, Hu J and Zhang H 2020 Solar. RRL 4 1900400 [3] Xie Z, Duo Y, Lin Z, Fan T, Xing C, Yu L, Wang R, Qiu M, Zhang Y, Zhao Y, Yan X and Zhang H 2020 Adv. Sci. 7 1902236 [4] Singh A K, Mathew K, Zhuang H L and Hennig R G 2015 J. Phys. Chem. Lett. 6 1087 [5] Wang L, Huang L, Tan W, Feng X, Chen L, Huang X and Ang K 2018 Small Methods 2 1700294 [6] Hong Y L, Liu Z, Wang L, Zhou T, Ma W, Xu C, Feng S, Chen L, Chen M L, Sun D M, Chen X Q, Cheng H and Ren W 2020 Science 369 670 [7] Mortazavi B, Javvaji B, Shojaei F, Rabczuk T, Shapeev A V and Zhuang X 2021 Nano Energy 82 105716 [8] Yao H, Zhang C, Wang Q, Li J, Yu Y, Xu F, Wang B and Wei Y 2021 Nanomaterials 11 559 [9] Gao L, Chao Li, Huang W, Mei S, Lin H, Ou Q, Zhang Y, Guo J, Zhang F, Xu S and Zhang H 2020 Chem. Mater. 32 1703 [10] Zhuang H L and Hennig R G 2013 J. Phys. Chem. C 117 20440 [11] Zhuang H L, Johannes M D, Blonsky M N and Hennig R G 2014 Appl. Phys. Lett. 104 022116 [12] Wang B J, Li X H, Cai X L, Yu W Y, Zhang L W, Zhao R and Ke S H 2018 J. Phys. Chem. C 122 7075 [13] Wang B J, Li X H, Zhao R Q, Cai X L, Yu W Y, Li W B, Liu Z S, Zhang L W and Ke S H 2018 J. Mater. Chem. A 6 8923 [14] Liu L X and Zha T Y 2021 InfoMat. 3 3 [15] Li J, Yang X D, Liu Y, Huang B L, Wu R X, Zhang Z W, Zhao B, Ma H F, Dang W Q, Wei Z, Wang K, Lin Z Y, Yan X X, Sun M Z, Li B, Pan X Q, Luo J, Zhang G Y, Liu Y, Huang Y, Duan X D and Duan X F 2020 Nature 579 368 [16] Ahsan M A, He T W, Noveron J C, ReuterK, Puente-Santiago A R and Luque R 2022 Chem. Soc. Rev. 51 812 [17] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372 [18] Zhang J L, Zhao S, Han C, Wang Z, Zhong S, Sun S, Guo R, Zhou X, Gu C D, Yuan K D, Li Z and Chen W 2016 Nano Lett. 16 4903 [19] Xiao J, Long M Q, Zhang X J, Ouyang J, Xu H and Gao Y L 2015 Sci. Rep. 5 09961 [20] Wang J J, Li S C, Yun F Y, Zhang X and Li Q X 2020 Int. J. Quantum Chem. 120 e26230 [21] Wang G X, Slough W J, Pandey R and Karna S P 2016 2D Mater. 3 025011 [22] Cai Y Q, Zhang G and Zhang Y W 2014 Sci. Rep. 4 6677 [23] Li X H, Wang B J, Wang G D and Ke S H 2020 Sustain. Energ. Fuels 4 5277 [24] Gao X, Na Y S, Ma Y Y, Wu S Y and Zhou Z X 2019 Appl. Phys. Lett. 114 093902 [25] Bafekry A, Faraji M, Hoat D M, Fadlallah M M, Shahrokhi M, Shojaei F, Gogova D and Ghergherehchi M 2021 J. Phys. D: Appl. Phys. 54 155303 [26] Zeng J, Xu L, Yang Y W, Luo X, Li H J, Xiong S X and Wang L L 2021 Phys. Chem. Chem. Phys. 23 8318 [27] Kresse G and Hafner J 1993 Phys. Rev. B 47 558 [28] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [29] Grimme S 2006 J. Comput. Chem. 27 1787 [30] Li J, Liu W Q, Zhou W H, Yang J L, Qu H Z, Hu Y and Zhang S L 2022 Phys. Rev. Appl. 17 054009 [31] Li J, Zhou W H, Xu L L, Yang J L, Qu H Z, Guo T T, Xu B, Zhang S L and Zeng H B 2022 Mater. Today Phys. 26 100749 [32] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207 [33] Heyd J, Scuseria G E and Ernzerhof M 2006 J. Chem. Phys. 124 219906 [34] Peng Q, Wang Z, Sa B, Wu B and Sun Z 2016 Sci. Rep. 6 31994 [35] Yu Y, Zhou J and Sun Z 2020 Adv. Funct. Mater. 30 2000570 [36] Cai Y Q, Zhang G and Zhang Y W 2015 J. Phys. Chem. C 119 13929 [37] He C, Zhang J H, Zhang W X and Li T T 2019 J. Phys. Chem. Lett. 10 3122 [38] Fu C F, Sun J Y, Luo Q Q, Li X X, Hu W and Yang J L 2018 Nano Lett. 18 6312 [39] Lu B, Zheng X and Li Z 2020 Nanoscale 12 6617 [40] Yang H, Ma Y, Zhang S, Jin H, Huang B and Dai Y 2019 J. Mater. Chem. A 7 12060 [41] Scharber M C, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger A J and Brabec C 2006 Adv. Mater. 18 789 [42] Cheng Z, Wang F, Shifa T A, Jiang C, Liu Q and He J 2017 Small 13 1702163 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|