Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 027104    DOI: 10.1088/1674-1056/ac9469
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics

Xiaohua Li(李晓华)1, Baoji Wang(王宝基)1,†, and Sanhuang Ke(柯三黄)2
1 School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China;
2 MOE Key Laboratory of Microstructured Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
Abstract  Converting solar energy into electric power or hydrogen fuel is a promising means to obtain renewable green energy. Here, we design a two-dimensional blue phosphorene (BlueP)/MoSi$_2$N$_4$ van der Waals heterostructure (vdWH) and investigate its potential application in photocatalysis and photovoltaics using first-principles calculations. We find that the BlueP/MoSi$_2$N$_4$ vdWH possesses type-II band structure with a large build-in electric field, thus endowing it with a potential ability to separate photogenerated electron-hole pairs. The calculated band-edge positions show that the heterostructure is a very promising water-splitting photocatalyst. Its solar-to-hydrogen efficiency ($\eta_{ \text{STH}}$) can reach up to 15.8%, which is quite promising for commercial applications. Furthermore, the BlueP/MoSi$_2$N$_4$ vdWH shows remarkably light absorption capacity and distinguished maximum power conversion efficiency ($\eta_{\text{PCE}}$) up to 10.61%. Remarkably, its $\eta_{\text{PCE}}$ can be further enhanced by the external strain: the $\eta_{\text{PCE}}$ of 21.20% can be obtained under a 4% tensile strain. Finally, we determine that adjusting the number of the BlueP sublayer is another effective method to modulate the band gaps and band alignments of the heterostructures. These theoretical findings indicate that BlueP/MoSi$_2$N$_4$ vdWH is a promising candidate for photocatalyst and photovoltaic device.
Keywords:  ab initio study      heterostructure      photovoltaic cell      photocatalytic water splitting  
Received:  19 April 2022      Revised:  07 August 2022      Accepted manuscript online:  23 September 2022
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.20.Nr (Semiconductor compounds)  
  74.78.Fk (Multilayers, superlattices, heterostructures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11374226), the Fundamental Research Funds for the Universities of Henan Province of China (Grant No. NSFRF200331), the Foundation of Henan Educational Committee (Grant No. 20A140013), as well as by the High-performance Grid Computing Platform of Henan Polytechnic University.
Corresponding Authors:  Baoji Wang     E-mail:  wbj@hpu.edu.cn

Cite this article: 

Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄) Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics 2023 Chin. Phys. B 32 027104

[1] Hou H and Zhang X 2020 Chem. Eng. J. 395 125030
[2] Xie Z, Peng Y, Yu L, Xing C, Qiu M, Hu J and Zhang H 2020 Solar. RRL 4 1900400
[3] Xie Z, Duo Y, Lin Z, Fan T, Xing C, Yu L, Wang R, Qiu M, Zhang Y, Zhao Y, Yan X and Zhang H 2020 Adv. Sci. 7 1902236
[4] Singh A K, Mathew K, Zhuang H L and Hennig R G 2015 J. Phys. Chem. Lett. 6 1087
[5] Wang L, Huang L, Tan W, Feng X, Chen L, Huang X and Ang K 2018 Small Methods 2 1700294
[6] Hong Y L, Liu Z, Wang L, Zhou T, Ma W, Xu C, Feng S, Chen L, Chen M L, Sun D M, Chen X Q, Cheng H and Ren W 2020 Science 369 670
[7] Mortazavi B, Javvaji B, Shojaei F, Rabczuk T, Shapeev A V and Zhuang X 2021 Nano Energy 82 105716
[8] Yao H, Zhang C, Wang Q, Li J, Yu Y, Xu F, Wang B and Wei Y 2021 Nanomaterials 11 559
[9] Gao L, Chao Li, Huang W, Mei S, Lin H, Ou Q, Zhang Y, Guo J, Zhang F, Xu S and Zhang H 2020 Chem. Mater. 32 1703
[10] Zhuang H L and Hennig R G 2013 J. Phys. Chem. C 117 20440
[11] Zhuang H L, Johannes M D, Blonsky M N and Hennig R G 2014 Appl. Phys. Lett. 104 022116
[12] Wang B J, Li X H, Cai X L, Yu W Y, Zhang L W, Zhao R and Ke S H 2018 J. Phys. Chem. C 122 7075
[13] Wang B J, Li X H, Zhao R Q, Cai X L, Yu W Y, Li W B, Liu Z S, Zhang L W and Ke S H 2018 J. Mater. Chem. A 6 8923
[14] Liu L X and Zha T Y 2021 InfoMat. 3 3
[15] Li J, Yang X D, Liu Y, Huang B L, Wu R X, Zhang Z W, Zhao B, Ma H F, Dang W Q, Wei Z, Wang K, Lin Z Y, Yan X X, Sun M Z, Li B, Pan X Q, Luo J, Zhang G Y, Liu Y, Huang Y, Duan X D and Duan X F 2020 Nature 579 368
[16] Ahsan M A, He T W, Noveron J C, ReuterK, Puente-Santiago A R and Luque R 2022 Chem. Soc. Rev. 51 812
[17] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
[18] Zhang J L, Zhao S, Han C, Wang Z, Zhong S, Sun S, Guo R, Zhou X, Gu C D, Yuan K D, Li Z and Chen W 2016 Nano Lett. 16 4903
[19] Xiao J, Long M Q, Zhang X J, Ouyang J, Xu H and Gao Y L 2015 Sci. Rep. 5 09961
[20] Wang J J, Li S C, Yun F Y, Zhang X and Li Q X 2020 Int. J. Quantum Chem. 120 e26230
[21] Wang G X, Slough W J, Pandey R and Karna S P 2016 2D Mater. 3 025011
[22] Cai Y Q, Zhang G and Zhang Y W 2014 Sci. Rep. 4 6677
[23] Li X H, Wang B J, Wang G D and Ke S H 2020 Sustain. Energ. Fuels 4 5277
[24] Gao X, Na Y S, Ma Y Y, Wu S Y and Zhou Z X 2019 Appl. Phys. Lett. 114 093902
[25] Bafekry A, Faraji M, Hoat D M, Fadlallah M M, Shahrokhi M, Shojaei F, Gogova D and Ghergherehchi M 2021 J. Phys. D: Appl. Phys. 54 155303
[26] Zeng J, Xu L, Yang Y W, Luo X, Li H J, Xiong S X and Wang L L 2021 Phys. Chem. Chem. Phys. 23 8318
[27] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[28] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[29] Grimme S 2006 J. Comput. Chem. 27 1787
[30] Li J, Liu W Q, Zhou W H, Yang J L, Qu H Z, Hu Y and Zhang S L 2022 Phys. Rev. Appl. 17 054009
[31] Li J, Zhou W H, Xu L L, Yang J L, Qu H Z, Guo T T, Xu B, Zhang S L and Zeng H B 2022 Mater. Today Phys. 26 100749
[32] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[33] Heyd J, Scuseria G E and Ernzerhof M 2006 J. Chem. Phys. 124 219906
[34] Peng Q, Wang Z, Sa B, Wu B and Sun Z 2016 Sci. Rep. 6 31994
[35] Yu Y, Zhou J and Sun Z 2020 Adv. Funct. Mater. 30 2000570
[36] Cai Y Q, Zhang G and Zhang Y W 2015 J. Phys. Chem. C 119 13929
[37] He C, Zhang J H, Zhang W X and Li T T 2019 J. Phys. Chem. Lett. 10 3122
[38] Fu C F, Sun J Y, Luo Q Q, Li X X, Hu W and Yang J L 2018 Nano Lett. 18 6312
[39] Lu B, Zheng X and Li Z 2020 Nanoscale 12 6617
[40] Yang H, Ma Y, Zhang S, Jin H, Huang B and Dai Y 2019 J. Mater. Chem. A 7 12060
[41] Scharber M C, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger A J and Brabec C 2006 Adv. Mater. 18 789
[42] Cheng Z, Wang F, Shifa T A, Jiang C, Liu Q and He J 2017 Small 13 1702163
[1] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[2] MoS2/Si tunnel diodes based on comprehensive transfer technique
Yi Zhu(朱翊), Hongliang Lv(吕红亮), Yuming Zhang(张玉明), Ziji Jia(贾紫骥), Jiale Sun(孙佳乐), Zhijun Lyu(吕智军), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(1): 018501.
[3] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[4] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[5] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
[6] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[7] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[8] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
[9] GeSn (0.524 eV) single-junction thermophotovoltaic cells based on the device transport model
Xin-Miao Zhu(朱鑫淼), Min Cui(崔敏), Yu Wang(汪宇), Tian-Jing Yu(于添景),Jin-Xiang Deng(邓金祥), and Hong-Li Gao(高红丽). Chin. Phys. B, 2022, 31(5): 058801.
[10] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
[11] Edge assisted epitaxy of CsPbBr3 nanoplates on Bi2O2Se nanosheets for enhanced photoresponse
Haotian Jiang(蒋浩天), Xing Xu(徐兴), Chao Fan(樊超), Beibei Dai(代贝贝), Zhuodong Qi(亓卓栋), Sha Jiang(蒋莎), Mengqiu Cai(蔡孟秋), and Qinglin Zhang(张清林). Chin. Phys. B, 2022, 31(4): 048102.
[12] Theoretical study on the improvement of the doping efficiency of Al in 4H-SiC by co-doping group-IVB elements
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yixiao Qian(钱怡潇), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(4): 046104.
[13] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[14] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[15] Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I)
Yaowen Long(龙耀文), Hong Zhang(张红), and Xinlu Cheng(程新路). Chin. Phys. B, 2022, 31(2): 027102.
No Suggested Reading articles found!