Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 053101    DOI: 10.1088/1674-1056/abd46a
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Configuration interaction study on low-lying states of AlCl molecule

Xiao-Ying Ren(任笑影), Zhi-Yu Xiao(肖志宇), Yong Liu(刘勇), and Bing Yan(闫冰)
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
Abstract  High-level ab initio calculations of the Λ-S states for aluminum monoiodide (AlCl) molecule are performed by utilizing the explicitly correlated multireference configuration interaction (MRCI-F12) method. The Davidson correction and scalar relativistic correction are investigated in the calculations. Based on the calculation by the MRCI-F12 method, the spin-orbit coupling (SOC) effect is investigated with the state-interacting technique. The adiabatic potential energy curves (PECs) of the 13 Λ-S states and 24 Ω states are calculated. The spectroscopic constants of bound states are determined, which are in accordance with the results of the available experimental and theoretical studies. Finally, the transition properties of 0+(2)-X0+, 1(1)-X0+, and 1(2)-X0+ transitions are predicted, including the transition dipole moments (TDMs), Franck-Condon factors (FCFs), and the spontaneous radiative lifetimes.
Keywords:  AlCl molecule      MRCI-F12      potential energy curves      spin-orbit coupling  
Received:  20 October 2020      Revised:  07 December 2020      Accepted manuscript online:  17 December 2020
PACS:  31.15.A- (Ab initio calculations)  
  31.15.aj (Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)  
  31.50.Bc (Potential energy surfaces for ground electronic states)  
  31.50.Df (Potential energy surfaces for excited electronic states)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0403300), the National Natural Science Foundation of China (Grant Nos. 11874177, 11874179, and 11574114), the Natural Science Foundation of Jilin Province, China (Grant No. 20180101289JC), and the High Performance Computing Center of Jilin University and High Performance Computing Cluster Tiger@IAMP (Theoretical Simulation Laboratory of Generalized Atomic, Molecular, and Energy Researches at Institute of Atomic and Molecular Physics).
Corresponding Authors:  Bing Yan     E-mail:  yanbing@jlu.edu.cn

Cite this article: 

Xiao-Ying Ren(任笑影), Zhi-Yu Xiao(肖志宇), Yong Liu(刘勇), and Bing Yan(闫冰) Configuration interaction study on low-lying states of AlCl molecule 2021 Chin. Phys. B 30 053101

[1] Cernicharo J and Guélin M 1987 Astron. Astrophys. 183 L10
[2] Rosenwaks S 1976 J. Chem. Phys. 65 3668
[3] Wan M J, Yuan D, Jin C G, Wang F H, Yang Y J, Yu Y and Shao J X 2016 J. Chem. Phys. 145 024309
[4] Wells N and Lane I C 2011 Phys. Chem. Chem. Phys. 13 19018
[5] Yang R, Tang B and Gao T 2016 Chin. Phys. B 25 043101
[6] Shuman E S, Barry J F and Demille D 2010 Nature 467 820
[7] Sharma D 1950 American Astronomical Society 113 210
[8] Hedderich H G, Dulick M and Bernath P F 1993 J. Chem. Phys. 99 8363
[9] Langhoff S R, Bauschlicher C W and Taylor P R 1988 J. Chem. Phys. 88 5715
[10] Dearden D V, Johnson R D and Hudgens J W 1993 J. Chem. Phys. 99 7521
[11] Saksena M D, Dixit V S and Singh M 1998 J. Mol. Spectrosc. 187 1
[12] Mahieu E, Dubqis I and Bredohl H 1989 J. Mol. Spectrosc. 134 317
[13] Rogowsiu D F and Fontijn A 1987 Chem. Phys. Lett. 137 219
[14] Brites D H V and Hochlaf M 2008 J. Phys. Chem. A 112 13419
[15] Yousefi M and Bernath P F 2018 The Astrophysical Journal Supplement Series 237 8
[16] Werner H J, Knowles P J, Knizia G, Manby F R and Schütz M 2012 Wires. Comput. Mol. Sci. 2 242
[17] Werner H J and Knowles P J 1985 J. Chem. Phys. 82 5053
[18] Werner H J and Meyer W 1980 J. Chem. Phys. 73 2342
[19] Langhoff S R and Davidson E R 1974 Int. J. Quantum Chem. 8 61
[20] Douglas M and Kroll N M 1974 Ann. Phys. 82 89
[21] Peng D and Hirao K 2009 J. Chem. Phys. 130 044102
[22] Reiher M and Wolf A 2004 J. Chem. Phys. 121 10945
[23] Pitzer R M and Winter N W 1988 J. Phys. Chem. 92 3061
[24] Tilson J L and Ermler W C 2014 Theoretical Chemistry Accounts 133 1564
[25] Wyse F C and Gordy W 1972 J. Chem. Phys. 56 2130
[26] Jastrzebski W, Kowalczyk P, Szczepkowski J, Allouche A R, Crozet P and Ross A J 2015 J. Chem. Phys. 113 2116
[27] Martin W C and Zalubas R 1979 J. Phys. Chem. Ref. Data 8 817
[28] Radziemski L J 1969 J. Opt. Soc. Am. 59 424
[29] Radziemski J, Leon J and Kaufman V 1974 J. Opt. Soc. Am. 64 366
[30] Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (New York: Van Nostrand Reinhold)
[31] Ram R S, Rai S B, Upadhya K N and Rai D K 1982 Phys. Scr. 26 383
[32] Hildenbrand D L and Theard L P 1969 J. Chem. Phys. 50 5350
[33] Kumar Y, Khanna B N and Varshney D C 1985 Indian J. Pure Appl. Phys 23 128
[34] Le Roy R J 2017 J. Quantum Spectrosc. Radiat. Transfer 186 167-168
[35] Mahieu E, Dubois I and Bredohl H 1989 H. J. Mol. Spectrosc. 138 264
[1] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[2] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[3] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[4] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[5] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[6] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[7] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[8] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[9] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[10] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[11] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[12] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[13] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[14] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[15] Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling
Shu-Tao Zhao(赵书涛), Xin-Peng Liu(刘鑫鹏), Rui Li(李瑞), Hui-Jie Guo(国慧杰), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(7): 073104.
No Suggested Reading articles found!