Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 126303    DOI: 10.1088/1674-1056/abc677
Special Issue: SPECIAL TOPIC — Phononics and phonon engineering
SPECIAL TOPIC—Phononics and phonon engineering Prev   Next  

Reduction of interfacial thermal resistance of overlapped graphene by bonding carbon chains

Yuwen Huang(黄钰文)1,2, Wentao Feng(冯文韬)1,2, Xiaoxiang Yu(余晓翔)1,2, Chengcheng Deng(邓程程)1,†, and Nuo Yang(杨诺)1,2,
1 School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; 2 State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  Exploring the mechanism of interfacial thermal transport and reducing the interfacial thermal resistance are of great importance for thermal management and modulation. Herein, the interfacial thermal resistance between overlapped graphene nanoribbons is largely reduced by adding bonded carbon chains as shown by molecular dynamics simulations. And the analytical model (phonon weak couplings model, PWCM) is utilized to analyze and explain the two-dimensional thermal transport mechanism at the cross-interface. An order of magnitude reduction of the interfacial thermal resistance is found as the graphene nanoribbons are bonded by just one carbon chain. Interestingly, the decreasing rate of the interfacial thermal resistance slows down gradually with the increasing number of carbon chains, which can be explained by the proposed theoretical relationship based on analytical model. Moreover, by the comparison of PWCM and the traditional simplified model, the accuracy of PWCM is demonstrated in the overlapped graphene nanoribbons. This work provides a new way to improve the interfacial thermal transport and reveal the essential mechanism for low-dimensional materials applied in thermal management.
Keywords:  phonon engineering      graphene      phonon weak couplings model      molecular dynamics  
Received:  20 September 2020      Revised:  29 October 2020      Accepted manuscript online:  31 October 2020
PACS:  63.22.Rc (Phonons in graphene)  
  65.80.Ck (Thermal properties of graphene)  
  05.70.Np (Interface and surface thermodynamics)  
  31.15.xv (Molecular dynamics and other numerical methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51606072) and the Fundamental Research Funds for the Central Universities, HUST, China (Grant No. 2019kfyRCPY045).
Corresponding Authors:  Corresponding author. E-mail: dengcc@hust.edu.cn Corresponding author. E-mail: nuo@hust.edu.cn   

Cite this article: 

Yuwen Huang(黄钰文), Wentao Feng(冯文韬), Xiaoxiang Yu(余晓翔), Chengcheng Deng(邓程程), and Nuo Yang(杨诺) Reduction of interfacial thermal resistance of overlapped graphene by bonding carbon chains 2020 Chin. Phys. B 29 126303

[1] Zhang Z and Chen J Chin. Phys. B 27 035101 DOI: 10.1088/1674-1056/27/3/0351012018
[2] Gu X, Wei Y, Yin X, Li B and Yang R Rev. Mod. Phys. 90 041002 DOI: 10.1103/RevModPhys.90.0410022018
[3] Zhang Z, Ouyang Y, Cheng Y, Chen J, Li N and Zhang G Phys. Rep. 860 1 DOI: 10.1016/j.physrep.2020.03.0012020
[4] Xie Q, Wang L, Li J, Li R and Chen X Q Chin. Phys. B 29 037306 DOI: 10.1088/1674-1056/ab6c4b2020
[5] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F and Lau C N Nano Lett. 8 902 DOI: 10.1021/nl07318722008
[6] Balandin A A Nat. Mater. 10 569 DOI: 10.1038/nmat30642011
[7] Yang N, Xu X, Zhang G and Li B AIP Adv. 2 041410 DOI: 10.1063/1.47734622012
[8] Xu X, Pereira L F, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Bui C T, Xie R and Thong J T Nat. Commun. 5 3689 DOI: 10.1038/ncomms46892014
[9] Cheng Z F and Zheng R L Chin. Phys. Lett. 33 046501 DOI: 10.1088/0256-307X/33/4/0465012016
[10] Lee C, Wei X, Kysar J W and Hone J Science 321 385 DOI: 10.1126/science.11579962008
[11] Novoselov K S, Fal V, Colombo L, Gellert P, Schwab M and Kim K Nature 490 192 DOI: 10.1038/nature114582012
[12] Tsen A W, Brown L, Levendorf M P, Ghahari F, Huang P Y, Havener R W, Ruiz-Vargas C S, Muller D A, Kim P and Park J Science 336 1143 DOI: 10.1126/science.12189482012
[13] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P Nature 556 43 DOI: 10.1038/nature261602018
[14] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A Science 306 666 DOI: 10.1126/science.11028962004
[15] Zhang N, Liu B and Lin L W Acta Phys. Sin. 69 016101 (in Chinese) DOI: 10.7498/aps.69.201913442020
[16] Lin Q M, Zhang X, Lu Q C, Luo Y B, Cui J G, Yan X, Ren X M and Huang X Acta Phys. Sin. 68 247302 (in Chinese) DOI: 10.7498/aps.68.201913042019
[17] Guo W L, Deng J, Wang J L, Wang L and Tai J P Acta Phys. Sin. 68 247303 (in Chinese) DOI: 10.7498/aps.68.201909832019
[18] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M and Geim A K Science 320 1308 DOI: 10.1126/science.11569652008
[19] Falkovsky L J. Phys.: Conf. Ser. 129 012004 DOI: 10.1088/1742-6596/129/1/0120042008
[20] Chen J, Walther J H and Koumoutsakos P Adv. Funct. Mater. 25 7539 DOI: 10.1002/adfm.v25.482015
[21] Alexeev D, Chen J, Walther J H, Giapis K P, Angelikopoulos P and Koumoutsakos P Nano Lett. 15 5744 DOI: 10.1021/acs.nanolett.5b030242015
[22] Han H, Zhang Y, Wang N, Samani M K, Ni Y, Mijbil Z Y, Edwards M, Xiong S, Sääskilahti K and Murugesan M Nat. Commun. 7 11281 DOI: 10.1038/ncomms112812016
[23] Chen J, Walther J H and Koumoutsakos P Nano Lett. 14 819 DOI: 10.1021/nl404182k2014
[24] Pereira L F C and Donadio D Phys. Rev. B 87 125424 DOI: 10.1103/PhysRevB.87.1254242013
[25] Chen J, Walther J H and Koumoutsakos P Nanotechnology 27 465705 DOI: 10.1088/0957-4484/27/46/4657052016
[26] Pop E, Varshney V and Roy A K MRS Bull. 37 1273 DOI: 10.1557/mrs.2012.2032012
[27] Chen S, Wang Q, Zhang M, Huang R, Huang Y, Tang J and Liu J Carbon 167 270 DOI: 10.1016/j.carbon.2020.06.0302020
[28] Xie Y, Yuan P, Wang T, Hashemi N and Wang X Nanoscale 8 17581 DOI: 10.1039/C6NR06402G2016
[29] Lin S, Anwer M A, Zhou Y, Sinha A, Carson L and Naguib H E Composites, Part B 132 61 DOI: 10.1016/j.compositesb.2017.08.0102018
[30] Guo H, Li X, Li B, Wang J and Wang S Mater. Des. 114 355 DOI: 10.1016/j.matdes.2016.11.0102017
[31] Luo T and Lloyd J R Adv. Funct. Mater. 22 2495 DOI: 10.1002/adfm.2011030482012
[32] Chi C, Li Y, Li D, Huang H, Wang Q, Yang Y and Huang B J. Mater. Chem. A 7 16748 DOI: 10.1039/C9TA04612G2019
[33] Wang N, Samani M K, Li H, Dong L, Zhang Z, Su P, Chen S, Chen J, Huang S and Yuan G Small 14 DOI: 10.1002/smll.2018013462018
[34] Peng L, Xu Z, Liu Z, Guo Y, Li P and Gao C Adv. Mater. 29 1700589 DOI: 10.1002/adma.v29.272017
[35] Zhao W, Chen W, Yue Y and Wu S Appl. Therm. Eng. 113 481 DOI: 10.1016/j.applthermaleng.2016.11.0632017
[36] Gao J, Meng C, Xie D, Liu C, Bao H, Yang B, Li M and Yue Y Appl. Therm. Eng. 150 1252 DOI: 10.1016/j.applthermaleng.2019.01.0982019
[37] Shahil K M and Balandin A A Solid State Commun. 152 1331 DOI: 10.1016/j.ssc.2012.04.0342012
[38] Huang H, Liu C, Wu Y and Fan S Adv. Mater. 17 1652 DOI: 10.1002/(ISSN)1521-40952005
[39] Zhu H, Li Y, Fang Z, Xu J, Cao F, Wan J, Preston C, Yang B and Hu L ACS nano 8 3606 DOI: 10.1021/nn500134m2014
[40] Shen B, Zhai W and Zheng W Adv. Funct. Mater. 24 4542 DOI: 10.1002/adfm.v24.282014
[41] Zhang J, Shi G, Jiang C, Ju S and Jiang D Small 11 6197 DOI: 10.1002/smll.v11.462015
[42] Malekpour H, Chang K H, Chen J C, Lu C Y, Nika D, Novoselov K and Balandin A Nano Lett. 14 5155 DOI: 10.1021/nl501996v2014
[43] Ju S, Shiga T, Feng L, Hou Z, Tsuda K and Shiomi J Phys. Rev. X 7 021024 DOI: 10.1103/PhysRevX.7.0210242017
[44] Zhang H, Xiong S, Wang H, Volz S and Ni Y EPL 125 46001 DOI: 10.1209/0295-5075/125/460012019
[45] Tian Z, Esfarjani K and Chen G Phys. Rev. B 86 235304 DOI: 10.1103/PhysRevB.86.2353042012
[46] Yang Y, Chen H, Wang H, Li N and Zhang L Phys. Rev. E 98 042131 DOI: 10.1103/PhysRevE.98.0421312018
[47] Deng C, Yu X, Huang X and Yang N J. Heat Transfer 139 DOI: 10.1115/1.40359982017
[48] Sun F, Zhang T, Jobbins M M, Guo Z, Zhang X, Zheng Z, Tang D, Ptasinska S and Luo T Adv. Mater. 26 6093 DOI: 10.1002/adma.2014009542014
[49] Yue Y, Zhang J, Xie Y, Chen W and Wang X Int. J. Heat Mass Transfer 110 827 DOI: 10.1016/j.ijheatmasstransfer.2017.03.0822017
[50] Qiu L, Zou H, Wang X, Feng Y, Zhang X, Zhao J, Zhang X and Li Q Carbon 141 497 DOI: 10.1016/j.carbon.2018.09.0732019
[51] Liu X, Zhang G and Zhang Y-W J. Phys. Chem. C 118 12541 DOI: 10.1021/jp502564e2014
[52] Xu Z and Buehler M J ACS nano 3 2767 DOI: 10.1021/nn90062372009
[53] Yang J, Waltermire S, Chen Y, Zinn A A, Xu T T and Li D Appl. Phys. Lett. 96 023109 DOI: 10.1063/1.32922032010
[54] Yang J, Shen M, Yang Y, Evans W J, Wei Z, Chen W, Zinn A A, Chen Y, Prasher R and Xu T T Phys. Rev. Lett. 112 205901 DOI: 10.1103/PhysRevLett.112.2059012014
[55] Zhong H and Lukes J R Phys. Rev. B 74 125403 DOI: 10.1103/PhysRevB.74.1254032006
[56] Shi L, Li D, Yu C, Jang W, Kim D, Yao Z, Kim P and Majumdar A J. Heat Transfer 125 881 DOI: 10.1115/1.15976192003
[57] Tang H, Wang X, Xiong Y, Zhao Y, Zhang Y, Zhang Y, Yang J and Xu D Nanoscale 7 6683 DOI: 10.1039/C5NR00917K2015
[58] Deng C, Huang Y, An M and Yang N Mater. Today Phys. 16 100305 DOI: 10.1016/j.mtphys.2020.1003052021
[59] Xiong Y, Yu X, Huang Y, Yang J, Li L, Yang N and Xu D Mater. Today Phys. 11 100139 DOI: 10.1016/j.mtphys.2019.1001392019
[60] Feng W, Yu X, Wang Y, Ma D, Sun Z, Deng C and Yang N Phys. Chem. Chem. Phys. 21 25072 DOI: 10.1039/C9CP04694A2019
[61] Chen G2005 Nanoscale energy transport and conversion: a parallel treatment of electrons, molecules, phonons, and photons (Oxford: Oxford University Press)
[62] Ma D, Arora A, Deng S, Xie G, Shiomi J and Yang N Mater. Today Phys. 8 56 DOI: 10.1016/j.mtphys.2019.01.0022019
[63] An M, Song Q, Yu X, Meng H, Ma D, Li R, Jin Z, Huang B and Yang N Nano Lett. 17 5805 DOI: 10.1021/acs.nanolett.7b029262017
[64] Ma D, Wan X and Yang N Phys. Rev. B 98 245420 DOI: 10.1103/PhysRevB.98.2454202018
[65] Wan X, Feng W, Wang Y, Wang H, Zhang X, Deng C and Yang N Nano Lett. 19 3387 DOI: 10.1021/acs.nanolett.8b051962019
[66] Xing L and Wei Rong Z Chin. Phys. Lett. 32 096501 DOI: 10.1088/0256-307X/32/9/0965012015
[67] Hu S, Chen J, Yang N and Li B Carbon 116 139 DOI: 10.1016/j.carbon.2017.01.0892017
[68] Ma D, Ding H, Wang X, Yang N and Zhang X Int. J. Heat Mass Transfer 108 940 DOI: 10.1016/j.ijheatmasstransfer.2016.12.0922017
[69] Swope W C, Andersen H C, Berens P H and Wilson K R The Journal of chemical physics 76 637 DOI: 10.1063/1.4427161982
[70] Plimpton S J. Comput. Phys. 117 1 DOI: 10.1006/jcph.1995.10391995
[71] Cui L, Feng Y, Tang J, Tan P and Zhang X Int. J. Therm. Sci. 99 64 DOI: 10.1016/j.ijthermalsci.2015.08.0042016
[72] Xie G, Ding D and Zhang G Adv. Phys. X 3 1480417 DOI: 10.1080/23746149.2018.14804172018
[73] Ding Z, An M, Mo S, Yu X, Jin Z, Liao Y, Esfarjani K, L\" J T, Shiomi J and Yang N J. Mater. Chem. A 7 2114 DOI: 10.1039/C8TA10500F2019
[74] Guo Z, Zhang D and Gong X G Appl. Phys. Lett. 95 163103 DOI: 10.1063/1.32461552009
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[4] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[5] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[6] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[7] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[8] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[9] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[10] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[11] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[12] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[13] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[14] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[15] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
No Suggested Reading articles found!