Special Issue:
SPECIAL TOPIC — Phononics and phonon engineering
|
SPECIAL TOPIC—Phononics and phonon engineering |
Prev
Next
|
|
|
Reduction of interfacial thermal resistance of overlapped graphene by bonding carbon chains |
Yuwen Huang(黄钰文)1,2, Wentao Feng(冯文韬)1,2, Xiaoxiang Yu(余晓翔)1,2, Chengcheng Deng(邓程程)1,†, and Nuo Yang(杨诺)1,2,‡ |
1 School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; 2 State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Abstract Exploring the mechanism of interfacial thermal transport and reducing the interfacial thermal resistance are of great importance for thermal management and modulation. Herein, the interfacial thermal resistance between overlapped graphene nanoribbons is largely reduced by adding bonded carbon chains as shown by molecular dynamics simulations. And the analytical model (phonon weak couplings model, PWCM) is utilized to analyze and explain the two-dimensional thermal transport mechanism at the cross-interface. An order of magnitude reduction of the interfacial thermal resistance is found as the graphene nanoribbons are bonded by just one carbon chain. Interestingly, the decreasing rate of the interfacial thermal resistance slows down gradually with the increasing number of carbon chains, which can be explained by the proposed theoretical relationship based on analytical model. Moreover, by the comparison of PWCM and the traditional simplified model, the accuracy of PWCM is demonstrated in the overlapped graphene nanoribbons. This work provides a new way to improve the interfacial thermal transport and reveal the essential mechanism for low-dimensional materials applied in thermal management.
|
Received: 20 September 2020
Revised: 29 October 2020
Accepted manuscript online: 31 October 2020
|
PACS:
|
63.22.Rc
|
(Phonons in graphene)
|
|
65.80.Ck
|
(Thermal properties of graphene)
|
|
05.70.Np
|
(Interface and surface thermodynamics)
|
|
31.15.xv
|
(Molecular dynamics and other numerical methods)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51606072) and the Fundamental Research Funds for the Central Universities, HUST, China (Grant No. 2019kfyRCPY045). |
Corresponding Authors:
†Corresponding author. E-mail: dengcc@hust.edu.cn ‡Corresponding author. E-mail: nuo@hust.edu.cn
|
Cite this article:
Yuwen Huang(黄钰文), Wentao Feng(冯文韬), Xiaoxiang Yu(余晓翔), Chengcheng Deng(邓程程), and Nuo Yang(杨诺) Reduction of interfacial thermal resistance of overlapped graphene by bonding carbon chains 2020 Chin. Phys. B 29 126303
|
[1] Zhang Z and Chen J Chin. Phys. B 27 035101 DOI: 10.1088/1674-1056/27/3/0351012018 [2] Gu X, Wei Y, Yin X, Li B and Yang R Rev. Mod. Phys. 90 041002 DOI: 10.1103/RevModPhys.90.0410022018 [3] Zhang Z, Ouyang Y, Cheng Y, Chen J, Li N and Zhang G Phys. Rep. 860 1 DOI: 10.1016/j.physrep.2020.03.0012020 [4] Xie Q, Wang L, Li J, Li R and Chen X Q Chin. Phys. B 29 037306 DOI: 10.1088/1674-1056/ab6c4b2020 [5] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F and Lau C N Nano Lett. 8 902 DOI: 10.1021/nl07318722008 [6] Balandin A A Nat. Mater. 10 569 DOI: 10.1038/nmat30642011 [7] Yang N, Xu X, Zhang G and Li B AIP Adv. 2 041410 DOI: 10.1063/1.47734622012 [8] Xu X, Pereira L F, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Bui C T, Xie R and Thong J T Nat. Commun. 5 3689 DOI: 10.1038/ncomms46892014 [9] Cheng Z F and Zheng R L Chin. Phys. Lett. 33 046501 DOI: 10.1088/0256-307X/33/4/0465012016 [10] Lee C, Wei X, Kysar J W and Hone J Science 321 385 DOI: 10.1126/science.11579962008 [11] Novoselov K S, Fal V, Colombo L, Gellert P, Schwab M and Kim K Nature 490 192 DOI: 10.1038/nature114582012 [12] Tsen A W, Brown L, Levendorf M P, Ghahari F, Huang P Y, Havener R W, Ruiz-Vargas C S, Muller D A, Kim P and Park J Science 336 1143 DOI: 10.1126/science.12189482012 [13] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P Nature 556 43 DOI: 10.1038/nature261602018 [14] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A Science 306 666 DOI: 10.1126/science.11028962004 [15] Zhang N, Liu B and Lin L W Acta Phys. Sin. 69 016101 (in Chinese) DOI: 10.7498/aps.69.201913442020 [16] Lin Q M, Zhang X, Lu Q C, Luo Y B, Cui J G, Yan X, Ren X M and Huang X Acta Phys. Sin. 68 247302 (in Chinese) DOI: 10.7498/aps.68.201913042019 [17] Guo W L, Deng J, Wang J L, Wang L and Tai J P Acta Phys. Sin. 68 247303 (in Chinese) DOI: 10.7498/aps.68.201909832019 [18] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M and Geim A K Science 320 1308 DOI: 10.1126/science.11569652008 [19] Falkovsky L J. Phys.: Conf. Ser. 129 012004 DOI: 10.1088/1742-6596/129/1/0120042008 [20] Chen J, Walther J H and Koumoutsakos P Adv. Funct. Mater. 25 7539 DOI: 10.1002/adfm.v25.482015 [21] Alexeev D, Chen J, Walther J H, Giapis K P, Angelikopoulos P and Koumoutsakos P Nano Lett. 15 5744 DOI: 10.1021/acs.nanolett.5b030242015 [22] Han H, Zhang Y, Wang N, Samani M K, Ni Y, Mijbil Z Y, Edwards M, Xiong S, Sääskilahti K and Murugesan M Nat. Commun. 7 11281 DOI: 10.1038/ncomms112812016 [23] Chen J, Walther J H and Koumoutsakos P Nano Lett. 14 819 DOI: 10.1021/nl404182k2014 [24] Pereira L F C and Donadio D Phys. Rev. B 87 125424 DOI: 10.1103/PhysRevB.87.1254242013 [25] Chen J, Walther J H and Koumoutsakos P Nanotechnology 27 465705 DOI: 10.1088/0957-4484/27/46/4657052016 [26] Pop E, Varshney V and Roy A K MRS Bull. 37 1273 DOI: 10.1557/mrs.2012.2032012 [27] Chen S, Wang Q, Zhang M, Huang R, Huang Y, Tang J and Liu J Carbon 167 270 DOI: 10.1016/j.carbon.2020.06.0302020 [28] Xie Y, Yuan P, Wang T, Hashemi N and Wang X Nanoscale 8 17581 DOI: 10.1039/C6NR06402G2016 [29] Lin S, Anwer M A, Zhou Y, Sinha A, Carson L and Naguib H E Composites, Part B 132 61 DOI: 10.1016/j.compositesb.2017.08.0102018 [30] Guo H, Li X, Li B, Wang J and Wang S Mater. Des. 114 355 DOI: 10.1016/j.matdes.2016.11.0102017 [31] Luo T and Lloyd J R Adv. Funct. Mater. 22 2495 DOI: 10.1002/adfm.2011030482012 [32] Chi C, Li Y, Li D, Huang H, Wang Q, Yang Y and Huang B J. Mater. Chem. A 7 16748 DOI: 10.1039/C9TA04612G2019 [33] Wang N, Samani M K, Li H, Dong L, Zhang Z, Su P, Chen S, Chen J, Huang S and Yuan G Small 14 DOI: 10.1002/smll.2018013462018 [34] Peng L, Xu Z, Liu Z, Guo Y, Li P and Gao C Adv. Mater. 29 1700589 DOI: 10.1002/adma.v29.272017 [35] Zhao W, Chen W, Yue Y and Wu S Appl. Therm. Eng. 113 481 DOI: 10.1016/j.applthermaleng.2016.11.0632017 [36] Gao J, Meng C, Xie D, Liu C, Bao H, Yang B, Li M and Yue Y Appl. Therm. Eng. 150 1252 DOI: 10.1016/j.applthermaleng.2019.01.0982019 [37] Shahil K M and Balandin A A Solid State Commun. 152 1331 DOI: 10.1016/j.ssc.2012.04.0342012 [38] Huang H, Liu C, Wu Y and Fan S Adv. Mater. 17 1652 DOI: 10.1002/(ISSN)1521-40952005 [39] Zhu H, Li Y, Fang Z, Xu J, Cao F, Wan J, Preston C, Yang B and Hu L ACS nano 8 3606 DOI: 10.1021/nn500134m2014 [40] Shen B, Zhai W and Zheng W Adv. Funct. Mater. 24 4542 DOI: 10.1002/adfm.v24.282014 [41] Zhang J, Shi G, Jiang C, Ju S and Jiang D Small 11 6197 DOI: 10.1002/smll.v11.462015 [42] Malekpour H, Chang K H, Chen J C, Lu C Y, Nika D, Novoselov K and Balandin A Nano Lett. 14 5155 DOI: 10.1021/nl501996v2014 [43] Ju S, Shiga T, Feng L, Hou Z, Tsuda K and Shiomi J Phys. Rev. X 7 021024 DOI: 10.1103/PhysRevX.7.0210242017 [44] Zhang H, Xiong S, Wang H, Volz S and Ni Y EPL 125 46001 DOI: 10.1209/0295-5075/125/460012019 [45] Tian Z, Esfarjani K and Chen G Phys. Rev. B 86 235304 DOI: 10.1103/PhysRevB.86.2353042012 [46] Yang Y, Chen H, Wang H, Li N and Zhang L Phys. Rev. E 98 042131 DOI: 10.1103/PhysRevE.98.0421312018 [47] Deng C, Yu X, Huang X and Yang N J. Heat Transfer 139 DOI: 10.1115/1.40359982017 [48] Sun F, Zhang T, Jobbins M M, Guo Z, Zhang X, Zheng Z, Tang D, Ptasinska S and Luo T Adv. Mater. 26 6093 DOI: 10.1002/adma.2014009542014 [49] Yue Y, Zhang J, Xie Y, Chen W and Wang X Int. J. Heat Mass Transfer 110 827 DOI: 10.1016/j.ijheatmasstransfer.2017.03.0822017 [50] Qiu L, Zou H, Wang X, Feng Y, Zhang X, Zhao J, Zhang X and Li Q Carbon 141 497 DOI: 10.1016/j.carbon.2018.09.0732019 [51] Liu X, Zhang G and Zhang Y-W J. Phys. Chem. C 118 12541 DOI: 10.1021/jp502564e2014 [52] Xu Z and Buehler M J ACS nano 3 2767 DOI: 10.1021/nn90062372009 [53] Yang J, Waltermire S, Chen Y, Zinn A A, Xu T T and Li D Appl. Phys. Lett. 96 023109 DOI: 10.1063/1.32922032010 [54] Yang J, Shen M, Yang Y, Evans W J, Wei Z, Chen W, Zinn A A, Chen Y, Prasher R and Xu T T Phys. Rev. Lett. 112 205901 DOI: 10.1103/PhysRevLett.112.2059012014 [55] Zhong H and Lukes J R Phys. Rev. B 74 125403 DOI: 10.1103/PhysRevB.74.1254032006 [56] Shi L, Li D, Yu C, Jang W, Kim D, Yao Z, Kim P and Majumdar A J. Heat Transfer 125 881 DOI: 10.1115/1.15976192003 [57] Tang H, Wang X, Xiong Y, Zhao Y, Zhang Y, Zhang Y, Yang J and Xu D Nanoscale 7 6683 DOI: 10.1039/C5NR00917K2015 [58] Deng C, Huang Y, An M and Yang N Mater. Today Phys. 16 100305 DOI: 10.1016/j.mtphys.2020.1003052021 [59] Xiong Y, Yu X, Huang Y, Yang J, Li L, Yang N and Xu D Mater. Today Phys. 11 100139 DOI: 10.1016/j.mtphys.2019.1001392019 [60] Feng W, Yu X, Wang Y, Ma D, Sun Z, Deng C and Yang N Phys. Chem. Chem. Phys. 21 25072 DOI: 10.1039/C9CP04694A2019 [61] Chen G2005 Nanoscale energy transport and conversion: a parallel treatment of electrons, molecules, phonons, and photons (Oxford: Oxford University Press) [62] Ma D, Arora A, Deng S, Xie G, Shiomi J and Yang N Mater. Today Phys. 8 56 DOI: 10.1016/j.mtphys.2019.01.0022019 [63] An M, Song Q, Yu X, Meng H, Ma D, Li R, Jin Z, Huang B and Yang N Nano Lett. 17 5805 DOI: 10.1021/acs.nanolett.7b029262017 [64] Ma D, Wan X and Yang N Phys. Rev. B 98 245420 DOI: 10.1103/PhysRevB.98.2454202018 [65] Wan X, Feng W, Wang Y, Wang H, Zhang X, Deng C and Yang N Nano Lett. 19 3387 DOI: 10.1021/acs.nanolett.8b051962019 [66] Xing L and Wei Rong Z Chin. Phys. Lett. 32 096501 DOI: 10.1088/0256-307X/32/9/0965012015 [67] Hu S, Chen J, Yang N and Li B Carbon 116 139 DOI: 10.1016/j.carbon.2017.01.0892017 [68] Ma D, Ding H, Wang X, Yang N and Zhang X Int. J. Heat Mass Transfer 108 940 DOI: 10.1016/j.ijheatmasstransfer.2016.12.0922017 [69] Swope W C, Andersen H C, Berens P H and Wilson K R The Journal of chemical physics 76 637 DOI: 10.1063/1.4427161982 [70] Plimpton S J. Comput. Phys. 117 1 DOI: 10.1006/jcph.1995.10391995 [71] Cui L, Feng Y, Tang J, Tan P and Zhang X Int. J. Therm. Sci. 99 64 DOI: 10.1016/j.ijthermalsci.2015.08.0042016 [72] Xie G, Ding D and Zhang G Adv. Phys. X 3 1480417 DOI: 10.1080/23746149.2018.14804172018 [73] Ding Z, An M, Mo S, Yu X, Jin Z, Liao Y, Esfarjani K, L\" J T, Shiomi J and Yang N J. Mater. Chem. A 7 2114 DOI: 10.1039/C8TA10500F2019 [74] Guo Z, Zhang D and Gong X G Appl. Phys. Lett. 95 163103 DOI: 10.1063/1.32461552009 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|