Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 124402    DOI: 10.1088/1674-1056/abbbf9
Special Issue: SPECIAL TOPIC — Phononics and phonon engineering
SPECIAL TOPIC—Phononics and phonon engineering Prev   Next  

A phononic rectifier based on carbon schwarzite host-guest system

Zhongwei Zhang(张忠卫)1,2,3, Yulou Ouyang(欧阳宇楼)1,2, Jie Chen(陈杰)1,2,†, and Sebastian Volz2,4,‡
1 Center for Phononics and Thermal Energy Science, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; 2 China-EU Joint Laboratory for Nanophononics, Tongji University, Shanghai 200092, China; 3 Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan; 4 Laboratory for Integrated Micro and Mechatronic Systems, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo 153-8505, Japan
Abstract  Thermal rectification is a promising way to manipulate the heat flow, in which thermal phonons are spectrally and collectively controlled. As phononic devices are mostly relying on monochromatic phonons, in this work we propose a phononic rectifier based on the carbon schwarzite host-guest system. By using molecular dynamic simulations, we demonstrate that the phononic rectification only happens at a specific frequency of the hybridized mode for the host-guest system, due to its strong confinement effect. Moreover, a significant rectification efficiency, 134 %, is observed, which is larger than most of the previously observed efficiencies. The study of length and temperature effects on the phononic rectification shows that the monochromaticity and frequency of the rectified thermal phonons depend on the intrinsic anharmonicity of the host-guest system and that the on-center rattling configuration with weak anharmonicity is preferable. Our study provides a new perspective on the rectification of thermal phonons, which would be important for controlling monochromatic thermal phonons in phononic devices.
Keywords:  thermal rectification      phonon      thermal transport  
Received:  28 July 2020      Revised:  23 September 2020      Accepted manuscript online:  28 September 2020
PACS:  44.10.+i (Heat conduction)  
  05.45.-a (Nonlinear dynamics and chaos)  
  63.20.-e (Phonons in crystal lattices)  
Fund: Project supported in part by the National Natural Science Foundation of China (Grant No. 11890703), Science and Technology Commission of Shanghai Municipality, China (Grant Nos. 19ZR1478600 and 18JC1410900), and the Fundamental Research Funds for the Central Universities, China (Grant No. 22120200069). This work was partially supported by CREST JST (Grant Nos. JPMJCR19Q3 and JPMJCR19I1). Z. Z. gratefully acknowledges financial support from China Scholarship Council.
Corresponding Authors:  Corresponding author. E-mail: Corresponding author. E-mail:   

Cite this article: 

Zhongwei Zhang(张忠卫), Yulou Ouyang(欧阳宇楼), Jie Chen(陈杰), and Sebastian Volz A phononic rectifier based on carbon schwarzite host-guest system 2020 Chin. Phys. B 29 124402

[1] Roberts N A and Walker D G Int. J. Therm. Sci. 50 648 DOI: 10.1016/j.ijthermalsci.2010.12.0042011
[2] Li N, Ren J, Wang L, Zhang G, Hänggi P and Li B Rev. Mod. Phys. 84 1045 DOI: 10.1103/RevModPhys.84.10452012
[3] Zhang Z, Ouyang Y, Cheng Y, Chen J, Li N and Zhang G Phys. Rep. 860 1 DOI: 10.1016/j.physrep.2020.03.0012020
[4] Li B, Wang L and Casati G Phys. Rev. Lett. 93 184301 DOI: 10.1103/PhysRevLett.93.1843012004
[5] Chang C W, Okawa D, Majumdar A and Zettl A Science 314 1121 DOI: 10.1126/science.11328982006
[6] Yang N, Zhang G and Li B Appl. Phys. Lett. 95 033107 DOI: 10.1063/1.31835872009
[7] Ouyang T, Chen Y, Xie Y, Wei X L, Yang K, Yang P and Zhong J Phys. Rev. B 82 245403 DOI: 10.1103/PhysRevB.82.2454032010
[8] Ding X and Ming Y Chin. Phys. Lett. 31 046601 DOI: 10.1088/0256-307X/31/4/0466012014
[9] Wang Y, Vallabhaneni A, Hu J, Qiu B, Chen Y P and Ruan X Nano Lett. 14 592 DOI: 10.1021/nl403773f2014
[10] Chen X K, Xie Z X, Zhou W X, Tang L M and Chen K Q Carbon 100 492 DOI: 10.1016/j.carbon.2016.01.0452016
[11] Zhang Z, Chen Y, Xie Y and Zhang S Appl. Therm. Eng. 102 1075 DOI: 10.1016/j.applthermaleng.2016.03.0832016
[12] Wang H, Hu S, Takahashi K, Zhang X, Takamatsu H and Chen J Nat. Commun. 8 15843 DOI: 10.1038/ncomms158432017
[13] Hu S, An M, Yang N and Li B Small 13 1602726 DOI: 10.1002/smll.2016027262017
[14] Aiyiti A, Zhang Z, Chen B, Hu S, Chen J, Xu X and Li B Carbon 140 673 DOI: 10.1016/j.carbon.2018.09.0022018
[15] Jiang P, Hu S, Ouyang Y, Ren W, Yu C, Zhang Z and Chen J 2020 J. Appl. Phys. 127 235101 DOI: 10.1063/5.0004484
[16] Fugallo G, Cepellotti A, Paulatto L, Lazzeri M, Marzari N and Mauri F Nano Lett. 14 6109 DOI: 10.1021/nl502059f2014
[17] Zhang Z, Guo Y, Bescond M, Chen J, Nomura M and Volz S arXiv:2003.02384
[18] Safavi-Naeini A H, Mayer Alegre T P, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E and Painter O Nature 472 69 DOI: 10.1038/nature099332011
[19] Gustafsson M V, Aref T, Kockum A F, Ekströ M K, Johansson G and Delsing P Science 346 207 DOI: 10.1126/science.12572192014
[20] Cohen J D, Meenehan S M, MacCabe G S, Groblacher S, Safavi-Naeini A H, Marsili F, Shaw M D and Painter O Nature 520 522 DOI: 10.1038/nature143492015
[21] Wang L and Li B Phys. Rev. Lett. 99 177208 DOI: 10.1103/PhysRevLett.99.1772082007
[22] Han H, Li B, Volz S and Kosevich Y A Phys. Rev. Lett. 114 145501 DOI: 10.1103/PhysRevLett.114.1455012015
[23] Zhang Z, Hu S, Xi Q, Nakayama T, Volz S, Chen J and Li B Phys. Rev. B 101 081402 DOI: 10.1103/PhysRevB.101.0814022020
[24] Takabatake T, Suekuni K, Nakayama T and Kaneshita E Rev. Mod. Phys. 86 669 DOI: 10.1103/RevModPhys.86.6692014
[25] Xi Q, Zhang Z, Chen J, Zhou J, Nakayama T and Li B Phys. Rev. B 96 064306 DOI: 10.1103/PhysRevB.96.0643062017
[26] Xi Q, Zhang Z, Nakayama T, Chen J, Zhou J and Li B Phys. Rev. B 97 224308 DOI: 10.1103/PhysRevB.97.2243082018
[27] Chen C, Zhang Z and Chen J 2018 Front. in Ener. Res 6 34 DOI: 10.3389/fenrg.2018.00034
[28] Dong J, Sankey O F, Ramachandran G K and McMillan P F J. Appl. Phys. 87 7726 DOI: 10.1063/1.3734472000
[29] Zhang Z, Hu S, Nakayama T, Chen J and Li B Carbon 139 289 DOI: 10.1016/j.carbon.2018.06.0572018
[30] Nakayama T and Kaneshita E J. Phys. Soc. Jpn. 80 104604 DOI: 10.1143/JPSJ.80.1046042011
[31] Pailh\`es S, Euchner H, Giordano V M, Debord R, Assy A, Gomes S, Bosak A, Machon D, Paschen S and de Boissieu M Phys. Rev. Lett. 113 025506 DOI: 10.1103/PhysRevLett.113.0255062014
[32] Tagami M, Liang Y, Naito H, Kawazoe Y and Kotani M Carbon 76 266 DOI: 10.1016/j.carbon.2014.04.0772014
[33] Zhang Z, Chen J and Li B Nanoscale 9 14208 DOI: 10.1039/C7NR04944G2017
[34] Lherbier A, Terrones H and Charlier J C Phys. Rev. B 90 125434 DOI: 10.1103/PhysRevB.90.1254342014
[35] O'Keeffe M, Adams G B and Sankey O F Phys. Rev. Lett. 68 2325 DOI: 10.1103/PhysRevLett.68.23251992
[36] Lindsay L and Broido D A Phys. Rev. B 81 205441 DOI: 10.1103/PhysRevB.81.2054412010
[37] Rappe A K, Casewit C J, Colwell K S, Goddard W A and Skiff W M J. Am. Chem. Soc. 114 10024 DOI: 10.1021/ja00051a0401992
[38] Hoover W G Phys. Rev. A 31 1695 DOI: 10.1103/PhysRevA.31.16951985
[39] Plimpton S 1995 J. Comput. Phys. 117 1 DOI: 10.1006/jcph.1995.1039
[40] Schelling P K, Phillpot S R and Keblinski P Phys. Rev. B 65 144306 DOI: 10.1103/PhysRevB.65.1443062002
[41] An M, Li L, Hu S, Ding Z, Yu X, Demir B, Yang N, Ma W and Zhang X Carbon 162 202 DOI: 10.1016/j.carbon.2020.02.0552020
[42] Larkin J M, Turney J E, Massicotte A D, Amon C H and McGaughey A J H J. Comput. Theor. Nanosci. 11 249 DOI: 10.1166/jctn.2014.33452014
[43] Bao H, Chen J, Gu X and Cao B 2018 ES Energy Environ. 1 16 DOI: 10.30919/esee8c149
[44] Sääskilahti K, Oksanen J, Tulkki J and Volz S Phys. Rev. B 90 134312 DOI: 10.1103/PhysRevB.90.1343122014
[45] Sääskilahti K, Oksanen J, Tulkki J and Volz S Phys. Rev. E 93 052141 DOI: 10.1103/PhysRevE.93.0521412016
[46] Schopf D, Euchner H and Trebin H R Phys. Rev. B 89 214306 DOI: 10.1103/PhysRevB.89.2143062014
[47] Tadano T and Tsuneyuki S Phys. Rev. Lett. 120 105901 DOI: 10.1103/PhysRevLett.120.1059012018
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[4] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[5] Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Chin. Phys. B, 2022, 31(7): 076301.
[6] Polarization-dependent ultrafast carrier dynamics in GaAs with anisotropic response
Ya-Chao Li(李亚超), Chao Ge(葛超), Peng Wang(汪鹏), Shuang Liu(刘爽), Xiao-Ran Ma(麻晓冉), Bing Wang(王冰), Hai-Ying Song(宋海英), and Shi-Bing Liu(刘世炳). Chin. Phys. B, 2022, 31(6): 067102.
[7] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[8] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[9] Erratum to “ Accurate GW0 band gaps and their phonon-induced renormalization in solids”
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2022, 31(5): 059901.
[10] Growth, characterization, and Raman spectra of the 1T phases of TiTe2, TiSe2, and TiS2
Xiao-Fang Tang(唐筱芳), Shuang-Xing Zhu(朱双兴), Hao Liu(刘豪), Chen Zhang(章晨), Qi-Yi Wu(吴旗仪), Zi-Teng Liu(刘子腾), Jiao-Jiao Song(宋姣姣), Xiao Guo(郭晓), Yong-Song Wang(王永松), He Ma(马赫), Yin-Zou Zhao(赵尹陬), Fan-Ying Wu(邬钒颖), Shu-Yu Liu(刘姝妤), Kai-Hui Liu(刘开辉), Ya-Hua Yuan(袁亚华), Han Huang(黄寒), Jun He(何军), Wen Xu(徐文), Hai-Yun Liu(刘海云), Yu-Xia Duan(段玉霞), and Jian-Qiao Meng(孟建桥). Chin. Phys. B, 2022, 31(3): 037103.
[11] Raman phonon anomalies in Sr(Fe1-xCox)2As2
Yanxing Yang(杨彦兴), Hewei Zhang(张鹤巍), and Haizheng Zhuang(庄海正). Chin. Phys. B, 2022, 31(2): 027401.
[12] Advances of phononics in 2012—2022
Ya-Fei Ding(丁亚飞), Gui-Mei Zhu(朱桂妹), Xiang-Ying Shen(沈翔瀛),Xue Bai(柏雪), and Bao-Wen Li(李保文). Chin. Phys. B, 2022, 31(12): 126301.
[13] Tunable terahertz acoustic-phonon emission from monolayer molybdenum disulfide
Cheng-Xiang Zhao(赵承祥), Miao-Miao Zheng(郑苗苗), Yuan Qie(郄媛), and Fang-Wei Han(韩方微). Chin. Phys. B, 2022, 31(12): 127202.
[14] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[15] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
No Suggested Reading articles found!