Special Issue:
SPECIAL TOPIC — Phononics and phonon engineering
|
SPECIAL TOPIC—Phononics and phonon engineering |
Prev
Next
|
|
|
A phononic rectifier based on carbon schwarzite host-guest system |
Zhongwei Zhang(张忠卫)1,2,3, Yulou Ouyang(欧阳宇楼)1,2, Jie Chen(陈杰)1,2,†, and Sebastian Volz2,4,‡ |
1 Center for Phononics and Thermal Energy Science, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; 2 China-EU Joint Laboratory for Nanophononics, Tongji University, Shanghai 200092, China; 3 Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan; 4 Laboratory for Integrated Micro and Mechatronic Systems, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo 153-8505, Japan |
|
|
Abstract Thermal rectification is a promising way to manipulate the heat flow, in which thermal phonons are spectrally and collectively controlled. As phononic devices are mostly relying on monochromatic phonons, in this work we propose a phononic rectifier based on the carbon schwarzite host-guest system. By using molecular dynamic simulations, we demonstrate that the phononic rectification only happens at a specific frequency of the hybridized mode for the host-guest system, due to its strong confinement effect. Moreover, a significant rectification efficiency, ∼ 134 %, is observed, which is larger than most of the previously observed efficiencies. The study of length and temperature effects on the phononic rectification shows that the monochromaticity and frequency of the rectified thermal phonons depend on the intrinsic anharmonicity of the host-guest system and that the on-center rattling configuration with weak anharmonicity is preferable. Our study provides a new perspective on the rectification of thermal phonons, which would be important for controlling monochromatic thermal phonons in phononic devices.
|
Received: 28 July 2020
Revised: 23 September 2020
Accepted manuscript online: 28 September 2020
|
PACS:
|
44.10.+i
|
(Heat conduction)
|
|
66.70.+f
|
|
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
63.20.-e
|
(Phonons in crystal lattices)
|
|
Fund: Project supported in part by the National Natural Science Foundation of China (Grant No. 11890703), Science and Technology Commission of Shanghai Municipality, China (Grant Nos. 19ZR1478600 and 18JC1410900), and the Fundamental Research Funds for the Central Universities, China (Grant No. 22120200069). This work was partially supported by CREST JST (Grant Nos. JPMJCR19Q3 and JPMJCR19I1). Z. Z. gratefully acknowledges financial support from China Scholarship Council. |
Corresponding Authors:
†Corresponding author. E-mail: jie@tongji.edu.cn ‡Corresponding author. E-mail: volz@iis.u-tokyo.ac.jp
|
Cite this article:
Zhongwei Zhang(张忠卫), Yulou Ouyang(欧阳宇楼), Jie Chen(陈杰), and Sebastian Volz A phononic rectifier based on carbon schwarzite host-guest system 2020 Chin. Phys. B 29 124402
|
[1] Roberts N A and Walker D G Int. J. Therm. Sci. 50 648 DOI: 10.1016/j.ijthermalsci.2010.12.0042011 [2] Li N, Ren J, Wang L, Zhang G, Hänggi P and Li B Rev. Mod. Phys. 84 1045 DOI: 10.1103/RevModPhys.84.10452012 [3] Zhang Z, Ouyang Y, Cheng Y, Chen J, Li N and Zhang G Phys. Rep. 860 1 DOI: 10.1016/j.physrep.2020.03.0012020 [4] Li B, Wang L and Casati G Phys. Rev. Lett. 93 184301 DOI: 10.1103/PhysRevLett.93.1843012004 [5] Chang C W, Okawa D, Majumdar A and Zettl A Science 314 1121 DOI: 10.1126/science.11328982006 [6] Yang N, Zhang G and Li B Appl. Phys. Lett. 95 033107 DOI: 10.1063/1.31835872009 [7] Ouyang T, Chen Y, Xie Y, Wei X L, Yang K, Yang P and Zhong J Phys. Rev. B 82 245403 DOI: 10.1103/PhysRevB.82.2454032010 [8] Ding X and Ming Y Chin. Phys. Lett. 31 046601 DOI: 10.1088/0256-307X/31/4/0466012014 [9] Wang Y, Vallabhaneni A, Hu J, Qiu B, Chen Y P and Ruan X Nano Lett. 14 592 DOI: 10.1021/nl403773f2014 [10] Chen X K, Xie Z X, Zhou W X, Tang L M and Chen K Q Carbon 100 492 DOI: 10.1016/j.carbon.2016.01.0452016 [11] Zhang Z, Chen Y, Xie Y and Zhang S Appl. Therm. Eng. 102 1075 DOI: 10.1016/j.applthermaleng.2016.03.0832016 [12] Wang H, Hu S, Takahashi K, Zhang X, Takamatsu H and Chen J Nat. Commun. 8 15843 DOI: 10.1038/ncomms158432017 [13] Hu S, An M, Yang N and Li B Small 13 1602726 DOI: 10.1002/smll.2016027262017 [14] Aiyiti A, Zhang Z, Chen B, Hu S, Chen J, Xu X and Li B Carbon 140 673 DOI: 10.1016/j.carbon.2018.09.0022018 [15] Jiang P, Hu S, Ouyang Y, Ren W, Yu C, Zhang Z and Chen J 2020 J. Appl. Phys. 127 235101 DOI: 10.1063/5.0004484 [16] Fugallo G, Cepellotti A, Paulatto L, Lazzeri M, Marzari N and Mauri F Nano Lett. 14 6109 DOI: 10.1021/nl502059f2014 [17] Zhang Z, Guo Y, Bescond M, Chen J, Nomura M and Volz S arXiv:2003.02384 https://arxiv.org/abs/2003.023842020 [18] Safavi-Naeini A H, Mayer Alegre T P, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E and Painter O Nature 472 69 DOI: 10.1038/nature099332011 [19] Gustafsson M V, Aref T, Kockum A F, Ekströ M K, Johansson G and Delsing P Science 346 207 DOI: 10.1126/science.12572192014 [20] Cohen J D, Meenehan S M, MacCabe G S, Groblacher S, Safavi-Naeini A H, Marsili F, Shaw M D and Painter O Nature 520 522 DOI: 10.1038/nature143492015 [21] Wang L and Li B Phys. Rev. Lett. 99 177208 DOI: 10.1103/PhysRevLett.99.1772082007 [22] Han H, Li B, Volz S and Kosevich Y A Phys. Rev. Lett. 114 145501 DOI: 10.1103/PhysRevLett.114.1455012015 [23] Zhang Z, Hu S, Xi Q, Nakayama T, Volz S, Chen J and Li B Phys. Rev. B 101 081402 DOI: 10.1103/PhysRevB.101.0814022020 [24] Takabatake T, Suekuni K, Nakayama T and Kaneshita E Rev. Mod. Phys. 86 669 DOI: 10.1103/RevModPhys.86.6692014 [25] Xi Q, Zhang Z, Chen J, Zhou J, Nakayama T and Li B Phys. Rev. B 96 064306 DOI: 10.1103/PhysRevB.96.0643062017 [26] Xi Q, Zhang Z, Nakayama T, Chen J, Zhou J and Li B Phys. Rev. B 97 224308 DOI: 10.1103/PhysRevB.97.2243082018 [27] Chen C, Zhang Z and Chen J 2018 Front. in Ener. Res 6 34 DOI: 10.3389/fenrg.2018.00034 [28] Dong J, Sankey O F, Ramachandran G K and McMillan P F J. Appl. Phys. 87 7726 DOI: 10.1063/1.3734472000 [29] Zhang Z, Hu S, Nakayama T, Chen J and Li B Carbon 139 289 DOI: 10.1016/j.carbon.2018.06.0572018 [30] Nakayama T and Kaneshita E J. Phys. Soc. Jpn. 80 104604 DOI: 10.1143/JPSJ.80.1046042011 [31] Pailh\`es S, Euchner H, Giordano V M, Debord R, Assy A, Gomes S, Bosak A, Machon D, Paschen S and de Boissieu M Phys. Rev. Lett. 113 025506 DOI: 10.1103/PhysRevLett.113.0255062014 [32] Tagami M, Liang Y, Naito H, Kawazoe Y and Kotani M Carbon 76 266 DOI: 10.1016/j.carbon.2014.04.0772014 [33] Zhang Z, Chen J and Li B Nanoscale 9 14208 DOI: 10.1039/C7NR04944G2017 [34] Lherbier A, Terrones H and Charlier J C Phys. Rev. B 90 125434 DOI: 10.1103/PhysRevB.90.1254342014 [35] O'Keeffe M, Adams G B and Sankey O F Phys. Rev. Lett. 68 2325 DOI: 10.1103/PhysRevLett.68.23251992 [36] Lindsay L and Broido D A Phys. Rev. B 81 205441 DOI: 10.1103/PhysRevB.81.2054412010 [37] Rappe A K, Casewit C J, Colwell K S, Goddard W A and Skiff W M J. Am. Chem. Soc. 114 10024 DOI: 10.1021/ja00051a0401992 [38] Hoover W G Phys. Rev. A 31 1695 DOI: 10.1103/PhysRevA.31.16951985 [39] Plimpton S 1995 J. Comput. Phys. 117 1 DOI: 10.1006/jcph.1995.1039 [40] Schelling P K, Phillpot S R and Keblinski P Phys. Rev. B 65 144306 DOI: 10.1103/PhysRevB.65.1443062002 [41] An M, Li L, Hu S, Ding Z, Yu X, Demir B, Yang N, Ma W and Zhang X Carbon 162 202 DOI: 10.1016/j.carbon.2020.02.0552020 [42] Larkin J M, Turney J E, Massicotte A D, Amon C H and McGaughey A J H J. Comput. Theor. Nanosci. 11 249 DOI: 10.1166/jctn.2014.33452014 [43] Bao H, Chen J, Gu X and Cao B 2018 ES Energy Environ. 1 16 DOI: 10.30919/esee8c149 [44] Sääskilahti K, Oksanen J, Tulkki J and Volz S Phys. Rev. B 90 134312 DOI: 10.1103/PhysRevB.90.1343122014 [45] Sääskilahti K, Oksanen J, Tulkki J and Volz S Phys. Rev. E 93 052141 DOI: 10.1103/PhysRevE.93.0521412016 [46] Schopf D, Euchner H and Trebin H R Phys. Rev. B 89 214306 DOI: 10.1103/PhysRevB.89.2143062014 [47] Tadano T and Tsuneyuki S Phys. Rev. Lett. 120 105901 DOI: 10.1103/PhysRevLett.120.1059012018 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|