ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
The (3+1)-dimensional generalized mKdV-ZK equation for ion-acoustic waves in quantum plasmas as well as its non-resonant multiwave solution |
Xiang-Wen Cheng(程香雯)1, Zong-Guo Zhang(张宗国)2, and Hong-Wei Yang(杨红卫)1,† |
1 College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China; 2 School of Mathematics and Statistics, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China |
|
|
Abstract The quantum hydrodynamic model for ion-acoustic waves in plasmas is studied. First, we design a new disturbance expansion to describe the ion fluid velocity and electric field potential. It should be emphasized that the piecewise function perturbation form is new with great difference from the previous perturbation. Then, based on the piecewise function perturbation, a (3+1)-dimensional generalized modified Korteweg-de Vries Zakharov-Kuznetsov (mKdV-ZK) equation is derived for the first time, which is an extended form of the classical mKdV equation and the ZK equation. The (3+1)-dimensional generalized time-space fractional mKdV-ZK equation is constructed using the semi-inverse method and the fractional variational principle. Obviously, it is more accurate to depict some complex plasma processes and phenomena. Further, the conservation laws of the generalized time-space fractional mKdV-ZK equation are discussed. Finally, using the multi-exponential function method, the non-resonant multiwave solutions are constructed, and the characteristics of ion-acoustic waves are well described.
|
Received: 18 May 2020
Revised: 29 July 2020
Accepted manuscript online: 01 September 2020
|
PACS:
|
45.10.Hj
|
(Perturbation and fractional calculus methods)
|
|
11.30.-j
|
(Symmetry and conservation laws)
|
|
02.30.Jr
|
(Partial differential equations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11975143), the Natural Science Foundation of Shandong Province of China (Grant No. ZR2018MA017), the Taishan Scholars Program of Shandong Province, China (Grant No. ts20190936), and the Shandong University of Science and Technology Research Fund (Grant No. 2015TDJH102). |
Corresponding Authors:
†Corresponding author. E-mail: hwyang1979@163.com
|
Cite this article:
Xiang-Wen Cheng(程香雯), Zong-Guo Zhang(张宗国), and Hong-Wei Yang(杨红卫) The (3+1)-dimensional generalized mKdV-ZK equation for ion-acoustic waves in quantum plasmas as well as its non-resonant multiwave solution 2020 Chin. Phys. B 29 124501
|
[1] Pines D S and Robert J Phys. Rev. 125 804 DOI: 10.1103/PhysRev.125.8041962 [2] Hussain S, Hasnain H and Haseeb M Q Chin. Phys. B 28 015202 DOI: 10.1088/1674-1056/28/1/0152022019 [3] Sun J C, Zhang Z G, Dong H H and Yang H W 2019 Acta Phys. Sin. 68 210201 (in Chinese) DOI: 10.7498/aps.68.20191045 [4] Xue J K and Lang H Chin. Phys. 13 60 DOI: 10.1088/1009-1963/13/1/0122004 [5] Xu T, Gao F, Hao T Q, Meng X J and Ma Z, Zhang C H and Chen H N IEEE Trans. Ind. Electron. 65 8005 DOI: 10.1109/TIE.412018 [6] Wang D S, Guo B L and Wang X L J. Differ. Equ. 266 5209 DOI: 10.1016/j.jde.2018.10.0532019 [7] Zhang H S and Zhang T Q Appl. Math. Lett. 103 106217 DOI: 10.1016/j.aml.2020.1062172020 [8] Weinstein M I Commun. Pure Appl. Math. 39 51 DOI: 10.1002/(ISSN)1097-03121986 [9] Wallis G Adv. Math. 47 326 DOI: 10.1016/0001-8708(83)90080-41983 [10] Haas F, Garcia L G, Goedert J and Manfredi G Phys. Plasmas 10 3858 DOI: 10.1063/1.16094462003 [11] Song J and Yang L G Chin. Phys. B 18 2873 DOI: 10.1088/1674-1056/18/7/0422009 [12] Mace R L and Hellberg M A Phys. Plasmas 8 2649 DOI: 10.1063/1.13636652001 [13] Machado J T, Kiryakova V and Mainardi F Commun. Nonlin. Sci. Numer. Simul. 16 1140 DOI: 10.1016/j.cnsns.2010.05.0272011 [14] Kirkby M J Earth Surf. Process. Landf. 8 406 DOI: 10.1002/esp.32900804151983 [15] He J H Appl. Math. Mech.-Engl. Ed. 21 797 DOI: 10.1007/BF024283782000 [16] Bai Z B Math. Model. Its Appl. 6 1 (in Chinese) DOI: 10.3969/j.issn.2095-3070.2017.02.0012017 [17] El-Shewy E K, Mahmoud A A, Tawfik A M, Abulwafa E M and Elgarayhi A Chin. Phys. B 23 070505 DOI: 10.1088/1674-1056/23/7/0705052014 [18] Yang X J and Machado J A T Physica A 481 276 DOI: 10.1016/j.physa.2017.04.0542017 [19] Xin X P, Miao Q and Chen Y Chin. Phys. B 23 010203 DOI: 10.1088/1674-1056/23/1/0102032014 [20] Sun Y, Chen B Y and Fu J L Chin. Phys. B 23 110201 DOI: 10.1088/1674-1056/23/11/1102012014 [21] Adem K R and Khalique C M Nonlin. Anal.-Real World Appl. 13 1692 DOI: 10.1016/j.nonrwa.2011.12.0012012 [22] Springel V and Hernquist L Mon. Not. Roy. Astron. Soc. 333 649 DOI: 10.1046/j.1365-8711.2002.05445.x2002 [23] Ling L, Feng B F and Zhu Z Physica D 327 13 DOI: 10.1016/j.physd.2016.03.0122016 [24] Feng B F, Maruno K and Ohta Y J. Phys. A-Math. Theor. 43 085203 DOI: 10.1088/1751-8113/43/8/0852032010 [25] Matveev V B and Salle M A Lett. Math. Phys. 3 425 DOI: 10.1007/BF003972171979 [26] Hirota R2004 Direct Methods in Soliton Theory (Cambridge: Cambridge University Press) pp. 27-46 [27] Lu X, Ma W X and Khalique C M Appl. Math. Lett. 50 37 DOI: 10.1016/j.aml.2015.06.0032015 [28] Zhang Y, Wei W W, Cheng T F and Song Y Chin. Phys. B 20 110204 DOI: 10.1088/1674-1056/20/11/1102042011 [29] Ma W X, Zhou R G and Gao L Mod. Phys. Lett. A 24 1677 DOI: 10.1142/S02177323090300962009 [30] Wang L L and Fu J L Chin. Phys. B 25 014501 DOI: 10.1088/1674-1056/25/1/0145012016 [31] Feng S D and Chen L Q Chin. Phys. Lett. 26 124501 DOI: 10.1088/0256-307X/26/12/1245012009 [32] Feng B F and Kawahara T Physica D 137 228 DOI: 10.1016/s0167-2789(99)00183-92000 [33] Yang X J, Gao F and Srivastava H M Comput. Math. Appl. 73 203 DOI: 10.1016/j.camwa.2016.11.0122017 [34] Liu Q S and Chen L G Complexity 2020 9075823 DOI: 10.1155/2020/90758232020 [35] Liu Q S, Zhang R G, Yang L G and Song J Phys. Lett. A 383 514 DOI: 10.1016/j.physleta.2018.10.0522009 [36] Zhang R G, Yang L G, Liu Q S and Yin X J Appl. Math. Comput. 346 666 DOI: 10.1016/j.amc.2018.10.0842019 [37] Khalique C M and Adem K R Math. Comput. Model. 54 184 DOI: 10.1016/j.mcm.2011.01.0492011 [38] Ma W X and Dong H H Math. Model. Its Appl. 6 16 (in Chinese) DOI: 10.3969/j.issn.2095-3070.2017.03.0022017 [39] Ma W X and You Y C Trans. Am. Math. Soc. 357 1753 DOI: 10.1090/tran/2005-357-052005 [40] Ma W X Mod. Phys. Lett. B 33 1950457 DOI: 10.1142/S02179849195045782019 [41] Ma W X and Zhang L Q Pramana-J. Phys. 94 43 DOI: 10.1007/s12043-020-1918-92020 [42] Chen G Q, Xiang W and Zhang Y Commun. Partial Differ. Equ. 38 1936 DOI: 10.1080/03605302.2013.8282292013 [43] Seadawy A R Phys. Plasmas 21 052107 DOI: 10.1063/1.48759872014 [44] El-Wakil S A, Abulwafa E M and Zahran M A Nonlin. Dyn. 65 55 DOI: 10.1007/s11071-010-9873-52010 [45] Ma W X Discret. Contin. Dyn. Syst.-Ser. S 11 707 DOI: 10.3934/dcdss.20180442018 [46] Ma W X wma3/Ma-SNS2011.pdf2011 Stud. Nonlin. Sci. 2 140 http://shell.cas.usf.edu/ |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|