Special Issue:
TOPICAL REVIEW — Celebrating 30 Years of Chinese Physics B
|
TOPICAL REVIEW—Celebrating 30 Years of Chinese Physics B |
Prev
Next
|
|
|
Advances of phononics in 2012—2022 |
Ya-Fei Ding(丁亚飞)1, Gui-Mei Zhu(朱桂妹)2,†, Xiang-Ying Shen(沈翔瀛)1,‡, Xue Bai(柏雪)3,§, and Bao-Wen Li(李保文)1,4,5,6 |
1 Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; 2 Bourida LLC, Qingdao 264000, China; 3 Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; 4 Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; 5 International Quantum Academy, Shenzhen 518048, China; 6 Paul M Rady Department of Mechanical Engineering and Department of Physics, University of Colorado, Boulder, Colorado 80305-0427, USA |
|
|
Abstract Due to its great potential applications in thermal management, heat control, and quantum information, phononics has gained increasing attentions since the first publication in Rev. Mod. Phys. 84 1045 (2012). Many theoretical and experimental progresses have been achieved in the past decade. In this paper, we first give a critical review of the progress in thermal diodes and transistors, especially in classical regime. Then, we give a brief introduction to the new developing research directions such as topological phononics and quantum phononics. In the third part, we discuss the potential applications. Last but not least, we point out the outlook and challenges ahead.
|
Received: 15 July 2022
Revised: 14 September 2022
Accepted manuscript online: 21 September 2022
|
PACS:
|
63.22.-m
|
(Phonons or vibrational states in low-dimensional structures and nanoscale materials)
|
|
65.80.-g
|
(Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)
|
|
63.20.-e
|
(Phonons in crystal lattices)
|
|
Fund: XB is supported by the National Natural Science Foundation of China (Grant No. 62004211) and Shenzhen Science and Technology Program (Grant No. RCBS20200714114858221). |
Corresponding Authors:
Gui-Mei Zhu, Xiang-Ying Shen, Xiang-Ying Shen
E-mail: zhugm07@gmail.com;shenxy@sustech.edu.cn;xue.bai@siat.ac.cn
|
Cite this article:
Ya-Fei Ding(丁亚飞), Gui-Mei Zhu(朱桂妹), Xiang-Ying Shen(沈翔瀛),Xue Bai(柏雪), and Bao-Wen Li(李保文) Advances of phononics in 2012—2022 2022 Chin. Phys. B 31 126301
|
[1] Lepri S, Livi R and Politi A 2003 Phys. Rep. 377 1 [2] Li N B, Ren J, Wang L, Zhang G, Hänggi P and Li B W 2012 Rev. Mod. Phys. 84 1045 [3] Terraneo M, Peyrard M and Casati G 2002 Phys. Rev. Lett. 88 094302 [4] Li B W, Wang L and Casati G 2004 Phys. Rev. Lett. 93 184301 [5] Chen S, Pereira E and Casati G 2015 Europhys. Lett. 111 30004 [6] Pereira E 2019 Europhys. Lett. 126 14001 [7] Shimokusu T J, Zhu Q, Rivera N and Wehmeyer G 2022 Int. J. Heat Mass Transf. 182 122035 [8] Wong M Y, Tso C Y, Ho T C and Lee H H 2021 Int. J. Heat Mass Transf. 164 120607 [9] Li B W, Wang L and Casati G 2006 Appl. Phys. Lett. 88 143501 [10] Gupt N, Bhattacharyya S, Das B, Datta S, Mukherjee V and Ghosh A arXiv: 2204.06178 [quant-ph] [11] Zhang Y C, Yang Z M, Zhang X, Lin B H, Lin G X and Chen J C 2018 Europhys. Lett. 122 17002 [12] Sklan S R and Li B W 2018 J. Appl. Phys. 123 224505 [13] Sood A, Xiong F, Chen S, Wang H, Selli D, Zhang J, McClellan C J, Sun J, Donadio D, Cui Y, Pop E and Goodson K E 2018 Nat. Commun. 9 4510 [14] Joulain K, Drevillon J, Ezzahri Y and Ordonez-Miranda J 2016 Phys. Rev. Lett. 116 200601 [15] Wang L and Li B W 2007 Phys. Rev. Lett. 99 177208 [16] Hamed A, Elzouka M and Ndao S 2019 Int. J. Heat Mass Transf. 134 359 [17] Wang L and Li B W 2008 Phys. Rev. Lett. 101 267203 [18] Kubytskyi V, Biehs S A and Ben-Abdallah P 2014 Phys. Rev. Lett. 113 074301 [19] Kimling J, Wilson R B, Rott K, Kimling J, Reiss G and Cahill D G 2015 Phys. Rev. B 91 144405 [20] Langenberg E, Saha D, Holtz M E, Wang J J, Bugallo D, Ferreiro-Vila E, Paik H, Hanke I, Ganschow S, Muller D A, Chen L Q, Catalan G, Domingo N, Malen J, Schlom D G and Rivadulla F 2019 Nano Lett. 19 8001 [21] Laws A D, Chang Y J, Bright V M and Lee Y C 2008 J. Electron. Packaging 130 021011 [22] Du T, Xiong Z, Delgado L, Liao W, Peoples J, Kantharaj R, Chowdhury P R, Marconnet A and Ruan X 2021 Nat. Commun. 12 4915 [23] Acar C and Dincer I 2019 Energy Storage 1 e47 [24] Tso C Y and Chao C Y H 2016 Int. J. Heat Mass Transf. 93 605 [25] Swoboda T, Klinar K, Yalamarthy A S, Kitanovski A and Rojo M M 2021 Adv. Electron. Mater. 7 2000625 [26] Wang H, Hu S, Takahashi K, Zhang X, Takamatsu H and Chen J 2017 Nat. Commun. 8 15843 [27] Shrestha R, Luan Y, Luo X, Shin S, Zhang T, Smith P, Gong W, Bockstaller M, Luo T, Chen R, Hippalgaonkar K and Shen S 2020 Nat. Commun. 11 4346 [28] Li Y, Shen X, Wu Z, Huang J, Chen Y, Ni Y and Huang J 2015 Phys. Rev. Lett. 115 195503 [29] Westwood M, Zhao X, Chen Z and Dames C 2021 Joule 5 2223 [30] Liu Y Z, Xu Y, Zhang S C and Duan W H 2017 Phys. Rev. B 96 064106 [31] Ruan Q and Wang L 2020 Phys. Rev. Res. 2 023087 [32] Wong M Y, Tso C Y, Ho T C and Lee H H 2021 Int. J. Heat Mass Transf. 164 120607 [33] Li B W, Lan J and Wang L 2005 Phys. Rev. Lett. 95 104302 [34] Romero-Bastida M, Miranda-Pena J O and Lopez J M 2017 Phys. Rev. E 95 032146 [35] Chen S, Donadio D, Benenti G and Casati G 2018 Phys. Rev. E 97 030101 [36] Alexander T J 2020 Phys. Rev. E 101 062122 [37] Hu B, Yang L and Zhang Y 2006 Phys. Rev. Lett. 97 124302 [38] Romero-Bastida M and Lindero-Hernandez M 2021 Phys. Rev. E 104 044135 [39] Simon M A, Alana A, Pons M, Ruiz-Garcia A and Muga J G 2021 Phys. Rev. E 103 012134 [40] Kalantar N, Agarwalla B K and Segal D 2021 Phys. Rev. E 103 052130 [41] Lan J H and Li B W 2006 Phys. Rev. B 74 214305 [42] Lan J H and Li B W 2007 Phys. Rev. B 75 214302 [43] Otey C R, Lau W T and Fan S 2010 Phys. Rev. Lett. 104 154301 [44] Wang K and Gao L 2020 ES Energy & Environment 7 12 [45] Martinez-Perez M J, Fornieri A and Giazotto F 2015 Nat. Nanotechnol. 10 303 [46] Giazotto F and Bergeret F S 2013 Appl. Phys. Lett. 103 242602 [47] Kargi C, Naseem M T, Opatrny T, Mustecaplioglu O E and Kurizki G 2019 Phys. Rev. E 99 042121 [48] Liang B, Yuan B and Cheng J C 2009 Phys. Rev. Lett. 103 104301 [49] Liang B, Guo X S, Tu J, Zhang D and Cheng J C 2010 Nat. Mater. 9 989 [50] Liu Y, Tian Y P, Chen F Q, Caratenuto A, Liu X J, Antezza M and Zheng Y 2021 Appl. Phys. Lett. 119 123101 [51] Fiorino A, Thompson D, Zhu L, Mittapally R, Biehs S A, Bezencenet O, El-Bondry N, Bansropun S, Ben-Abdallah P, Meyhofer E and Reddy P 2018 ACS Nano 12 5774 [52] Ghanekar A, Xiao G and Zheng Y 2017 Sci. Rep. 7 6339 [53] Boechler N, Theocharis G and Daraio C 2011 Nat. Mater. 10 665 [54] Nassar H, Yousefzadeh B, Fleury R, Ruzzene M, Alu A, Daraio C, Norris A N, Huang G L and Haberman M R 2020 Nat. Rev. Mater. 5 667 [55] Fang X, Wen J H, Cheng L and Li B W 2021 Phys. Rev. Appl. 15 054022 [57] Haldane F D 1988 Phys. Rev. Lett. 61 2015 [58] Liu Y Z, Chen X B and Xu Y 2020 Adv. Funct. Mater. 30 1904784 [59] Pekola J P and Karimi B 2021 Rev. Mod. Phys. 93 041001 [60] Zhang L F, Yan Y H, Wu C Q, Wang J S and Li B W 2009 Phys. Rev. B 80 172301 [61] Werlang T and Valente D 2015 Phys. Rev. E 91 012143 [62] Scheibner R, Konig M, Reuter D, Wieck A D, Gould C, Buhmann H and Molenkamp L W 2008 New J. Phys. 10 083016 [63] Gotsmann B, Gemma 2A and Segal D 2022 Appl. Phys. Lett. 120 160503 [56] Ordonez-Miranda J, Ezzahri Y and Joulain K 2017 Phys. Rev. E 95 022128 [64] Chang C W, Okawa D, Majumdar A and Zettl A 2006 Science 314 1121 [65] Yang N, Zhang G and Li B W 2010 Nano Today 5 85 [66] Ye Z Q and Cao B Y 2017 Nanoscale 9 11480 [68] Aiyiti A, Zhang Z W, Chen B S, Hu S Q, Chen J, Xu X F and Li B W 2018 Carbon 140 673 [67] Liu B, Chen Y and Xu X 2021 Nanoscale 13 13641 [69] Li T, Jiang W T, Zhang Y, Li B T, Wang L L, Niu D, Liu H Z, Yin L, Shi Y S, Chen B D, Chen J J, Liu X K and Peng D L 2022 Adv. Funct. Mater. 32 2111229 [70] Lyu J, Sheng Z Z, Xu Y Y, Liu C M and Zhang X T 2022 Adv. Funct. Mater. 32 2200137 [71] Bardeen J and Brattain W H 1948 Phys. Rev. 74 230 [72] Ben-Abdallah P and Biehs S A 2014 Phys. Rev. Lett. 112 044301 [73] Song B, Fiorino A, Meyhofer E and Reddy P 2015 AIP Advances 5 053503 [74] Liang B, Kan W W, Zou X Y, Yin L L and Cheng J C 2014 Appl. Phys. Lett. 105 083510 [75] Chen X K, Xie Z X, Zhou W X, Tang L M and Chen K Q 2016 Carbon 100 492 [76] Fu W C, Jin T, He D H and Qu S X 2015 Physica A 433 211 [77] Chung Lo W, Wang L and Li B W 2008 J. Phys. Soc. Jpn. 77 054402 [78] Behnia S and Panahinia R 2018 Chem. Phys. 505 40 [79] Majland M, Christensen K S and Zinner N T 2020 Phys. Rev. B 101 184510 [80] Klinar K, Rojo M M, Kutnjak Z and Kitanovski A 2020 J. Appl. Phys. 127 234101 [81] Schmidt R R, Cruz E E and Iyengar M 2005 IBM Journal of Research and Development 49 709 [82] Zhao P, Lim Y D, Li H Y, Luca G and Tan C S 2021 IEEE Open Journal of Nanotechnology 2 101 [83] Song H, Liu J, Liu B, Wu J, Cheng H M and Kang F 2018 Joule 2 442 [84] Moore A L and Shi L 2014 Materials Today 17 163 [85] Franco V, Blázquez J S, Ipus J J, Law J Y, Moreno-Ramírez L M and Conde A 2018 Progress in Materials Science 93 112 [86] Ožbolt M, Kitanovski A, Tušek J and Poredoš A 2014 International Journal of Refrigeration 40 174 [87] Qian S, Geng Y, Wang Y, Ling J, Hwang Y, Radermacher R, Takeuchi I and Cui J 2016 International Journal of Refrigeration 64 1 [88] Shannon C E 1938 Electrical Engineering 57 713 [89] Waldrop M M 2016 Nature 530 144 [90] Wehmeyer G, Yabuki T, Monachon C, Wu J Q and Dames C 2017 Appl. Phys. Rev. 4 041304 [91] Pugsley A, Zacharopoulos A, Mondol J D and Smyth M 2019 Int. J. Heat Mass Transf. 144 118660 [92] Kim P, Shi L, Majumdar A and McEuen P L 2001 Phys. Rev. Lett. 87 215502 [93] Wang Z, Xie R, Bui C T, Liu D, Ni X, Li B W and Thong J T 2011 Nano Lett 11 113 [94] Xu X, Pereira L F, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Tinh Bui C, Xie R, Thong J T, Hong B H, Loh K P, Donadio D, Li B W and Ozyilmaz B 2014 Nat. Commun. 5 3689 [95] Hartland G V 2011 Chem. Rev. 111 3858 [96] Sun B and Koh Y K 2016 Rev. Sci. Instrum. 87 064901 [97] Chen J, Xu X F, Zhou J and Li B W 2022 Rev. Mod. Phys. 94 025002 [98] Shen X Y and Huang J P 2014 Int. J. Heat Mass Transf. 78 1 [99] Narayana S and Sato Y 2012 Phys. Rev. Lett. 108 214303 [100] Li N B, Zhan F, Hänggi P and Li B W 2009 Phys. Rev. E 80 011125 [101] Zhao H and Nie L 2020 Euro. Phys. J. B 93 206 [102] Song H, Liu J, Liu B, Wu J, Cheng H M and Kang F 2018 Joule 2 442 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|