|
|
Direct measurement of two-qubit phononic entangled states via optomechanical interactions |
A-Peng Liu(刘阿鹏)1,†, Liu-Yong Cheng(程留永)2, Qi Guo(郭奇)3, Shi-Lei Su(苏石磊)4, Hong-Fu Wang(王洪福)5, and Shou Zhang(张寿)5,‡ |
1 Shanxi Institute of Technology, Yangquan 045000, China; 2 School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030032, China; 3 College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China; 4 School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China; 5 Department of Physics, College of Science, Yanbian University, Yanji 133002, China |
|
|
Abstract We propose schemes of direct concurrence measurement for two-qubit phononic states from quantized mechanical vibration. By combining the Mach-Zehnder interferometer with the optomechanical cross-Kerr nonlinear effect, direct concurrence measurement schemes for two-qubit phononic entangled states are achieved with the help of photon detection with respect to the output of the interferometer. For different types of entangled states, diversified quantum devices and operations are designed accordingly. The final analysis shows reasonable performance under the current parameter conditions. Our schemes may be useful for potential phonon-based quantum computation and information in the future.
|
Received: 05 October 2021
Revised: 17 February 2022
Accepted manuscript online: 14 March 2022
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.67.Hk
|
(Quantum communication)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61801280, 11604190, 11747096, 11804308, and 61465013), the Science and Technologial Innovation Programs of Higher Education Institutions in Shanxi Province, China (Grant Nos. 2019L0988 and 2019L0043), the Fund for Shanxi "1331 Project" Key Subjects Construction (Grant No. 2019XF-04), and the Applied Fundamental Research Project of Yangquan (Grant No. 2019G24). |
Corresponding Authors:
A-Peng Liu, Shou Zhang
E-mail: apliu@sxit.edu.cn;szhang@ybu.edu.cn
|
Cite this article:
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿) Direct measurement of two-qubit phononic entangled states via optomechanical interactions 2022 Chin. Phys. B 31 080307
|
[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge:Cambridge University Press) [2] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 [3] Su S L, Guo F Q, Tian L, Zhu X Y, Yan L L, Liang E J and Feng M 2020 Phys. Rev. A 101 012347 [4] Su S L, Shen H Z, Liang E J and Zhang S 2018 Phys. Rev. A 98 032306 [5] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895 [6] Kwiat P G, Mattle K, Weinfurter H, Zeilinger A, Sergienko A V and Shih Y 1995 Phys. Rev. Lett. 75 4337 [7] White A G, James D F V, Eberhard P H and Kwiat P G 1999 Phys. Rev. Lett. 83 3103 [8] Ye M Y, Zhang Y S and Guo G C 2004 Phys. Rev. A 69 022310 [9] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824 [10] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996 Phys. Rev. Lett. 76 722 [11] Werner R F 1988 Phys. Rev. A 40 4277 [12] Wei T C, Altepeter J B, Branning D, Goldbart P M, James D F V, Jeffrey E, Kwiat P G, Mukhopadhyay S and Peters N A 2005 Phys. Rev. A 71 032329 [13] Collins D and Gisin N 2004 J. Phys. A 37 1775 [14] Bell J S 1964 Physics 1 195 [15] Peres A 1996 Phys. Rev. Lett. 77 1413 [16] Duan L M, Giedke G, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 84 2722 [17] Horodecki M, Horodecki P and Horodecki R 1996 Phys. Lett. A 223 1 [18] James D F V, Kwiat P G, Munro W J and White A G 2005 Phys. Rev. A 64 052312 [19] Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046 [20] Wootters W K 1998 Phys. Rev. Lett. 80 2245 [21] Wootters W K 2001 Quantum Inf. Comput. 1 27 [22] Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022 [23] Zhang L H, Yang Q, Yang M, Song W and Cao Z L 2013 Phys. Rev. A 88 062342 [24] Zhang L H, Yang M and Cao Z L 2014 Eur. Phys. J. D 68 109 [25] Romero G, López C E, Lastra F, Solano E and Retamal J C 2007 Phys. Rev. A 75 032303 [26] Zeng T, Chu W J, Yang Q, Yang M, Song W and Cao Z L 2017 Quantum Inf. Process. 16 262 [27] Walborn S P, Souto Ribeiro P H, Davidovich L, Mintert F and Buchleitner A 2006 Nature 440 1022 [28] Zhou L and Sheng Y B 2015 Entropy 17 4293 [29] Lee S M, Ji S W, Lee H W and Zubairy M S 2008 Phys. Rev. A 77 040301(R) [30] Zhou L and Sheng Y B 2014 Phys. Rev. A 90 024301 [31] Cheng L Y, Guo Q, Wang H F and Zhang S 2019 Quantum Inf. Process. 18 214 [32] Cheng L Y, Zheng L N, Wang H F and Zhang S 2019 Int. J. Theore. Phys. 58 2994 [33] Cheng L Y, Yang G H, Guo Q, Wang H F and Zhang S 2016 Sci. Rep. 6 19482 [34] Yang R C, Lin X, Huang Z P and Li H C 2009 Commun. Theor. Phys. 51 252 [35] Sheng Y B, Guo R, Pan J, Zhou L and Wang X F 2015 Quantum Inf. Process. 14 963 [36] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391 [37] Ludwig M, Safavi-Naeini A H, Painter O and Marquardt F 2012 Phys. Rev. Lett. 109 063601 [38] Stannigel K, Komar P, Habraken S J M, Bennett S D, Lukin M D, Zoller P and Rabl P 2012 Phys. Rev. Lett. 109 013603 [39] Tian L 2012 Phys. Rev. Lett. 108 153604 [40] Han X, Wang D Y, Bai C H, Cui W X, Zhang S and Wang H F 2019 Phys. Rev. A 100 033812 [41] Bai C H, Wang D Y, Wang H F, Zhu A D and Zhang S 2017 Sci. Rep. 7 2545 [42] Wang D Y, Bai C H, Liu S, Zhang S and Wang H F 2019 J. Phys. B 52 045502 [43] Vitali D, Gigan S, Ferreira A, Bohm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405 [44] Paternostro M, Vitali D, Gigan S, Kim M S, Brukner C, Eisert J and Aspelmeyer M 2007 Phys. Rev. Lett. 99 250401 [45] Liao J Q and Nori F 2013 Phys. Rev. A 88 023853 [46] Xie H, Liao C G, Shang X, Ye M Y and Lin X M 2017 Phys. Rev. A 96 013861 [47] Zhang H, Song X K, Ai Q, Wang H, Yang G J and Deng F G 2019 Opt. Express 27 7384 [48] Zhang W Z, Cheng J and Zhou L 2015 J. Phys. B 48 015502 [49] Zhang K, Bariani F, Dong Y, Zhang W and Meystre P 2015 Phys. Rev. Lett. 114 113601 [50] Schuetz M J A, Kessler E M, Giedke G, Vandersypen L M K, Lukin M D and Cirac J I 2015 Phys. Rev. X 5 031031 [51] Flayac H and Savona V 2014 Phys. Rev. Lett. 113 143603 [52] Zhang W J, Zhang Y, Guo Q, Liu A P, Li G and Zhang T 2021 Phys. Rev. A 104 053506 [53] Chen S S, Zhang H, Ai Q and Yang G J 2019 Phys. Rev. A 100 052306 [54] Yu P L, Cicak K, Kampel N S, Tsaturyan Y, Purdy T P, Simmonds R W and Regal C A 2014 Appl. Phys. Lett. 104 023510 [55] Tsaturyan Y, Barg A, Polzik E S and Schliesser A 2017 Nat. Nanotechnol. 12 776 [56] Patel R N, Wang Z, Jiang W, Sarabalis C J, Hill J T and Safavi-Naeini A H 2018 Phys. Rev. Lett. 121 040501 [57] Chen T Y, Zhang W Z, Fang R Z, Hang C Z and Zhou L 2017 Opt. Express 25 10779 [58] Yin T S, Lü X Y, Wan L L, Bin S W and Wu Y 2018 Opt. Lett. 43 2050 [59] Liao J Q, Huang J F, Tian L, Kuang L M and Sun C P 2020 Phys. Rev. A 101 063802 [60] Tian L, Allman M S and Simmonds R W 2008 New J. Phys. 10 115001 [61] O'Connell A D, Hofheinz M, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis J M and Cleland A N 2010 Nature 464 697 [62] Okamoto H, Gourgout A, Chang C Y, Onomitsu K, Mahboob I, Chang E Y and Yamaguchi H 2013 Nat. Phys. 9 480 [63] Ockeloen-Korppi C F, Damskägg E, Pirkkalainen J M, Asjad M, Clerk A A, Massel F, Woolley M J and Sillanpää M A 2018 Nature 556 478 [64] Riedinger R, Wallucks A, Marinković I, Löschnauer C, Aspelmeyer M, Hong S and Gröblacher S 2018 Nature 556 473 [65] Pepper B, Ghobadi R, Jeffrey E, Simon C and Bouwmeester D 2012 Phys. Rev. Lett. 109 023601 [66] Hijlkema M, Weber B, Specht H P, Webster S C, Kuhn A and Rempe G 2007 Nat. Phys. 3 253 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|