1. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2. School of Physical Science, University of Chinese Academy of Sciences, Beijing 100049, China; 3. Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract By studying the thermal conductivity, specific heat, elastic modulus, and thermal expansion as a function of temperature for Cd3As2, we have unveiled a couple of important thermodynamic features of the low-energy phonons strongly interacting with Dirac electrons. The existence of soft optical phonons, as inferred from the extremely low thermal conductivity, is unambiguously confirmed by low-temperature specific heat revealing significant deviation from Debye's description. The estimated Debye temperature is small in the range of 100—200 K and varies significantly depending upon the measurement used in its experimental determination. The thermodynamic Grüneisen ratio γ reveals a remarkable reduction below about 100 K, an energy scale that is highly relevant to the Dirac states, towards negative values below about 10 K that are indicative of lattice instability.
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 11974389, 12141002 and 52088101), the National Key R&D Program of China (Grant No. 2017YFA0303100), the Chinese Academy of Sciences through the Scientific Instrument Developing Project (Grant No. ZDKYYQ20210003), and the Strategic Priority Research Program (Grant No. XDB33000000).
Corresponding Authors:
Peijie Sun
E-mail: pjsun@iphy.ac.cn
Cite this article:
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰) Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2 2022 Chin. Phys. B 31 106501
[1] Song Z D, Zhao J M, Fang Z and Dai X 2016 Phys. Rev. B94 214306 [2] Nguyen T, Han F, Andrejevic N, Pablo-Pedro R, Apte A, Tsurimaki Y, Ding Z W, Zhang K Y, Alatas A, Alp E E, Chi S X, Fernandez-Baca J, Matsuda M, Tennant D A, Zhao Y, Xu Z J, Lynn J W, Huang S X and Li M D 2020 Phys. Rev. Lett.124 236401 [3] Singh S, Wu Q S, Yue C M, Romero A H and Soluyanov A A 2018 Phys. Rev. Mater.2 114204 [4] Wang Z J, Weng H M, Wu Q S, Dai X and Fang Z 2013 Phys. Rev. B88 125427 [5] Xiang J S, Hu S L, Lyu M, Zhu W L, Ma C Y, Chen Z Y, Steglich F, Chen G F and Sun P J 2020 Sci. China-Phys. Mech. Astron.63 237011 [6] Spitzer D P, Castellion G A and Haacke G 1966 J. Appl. Phys.37 3795 [7] Zhang C, Zhou T, Liang S H, Cao J Z, Yuan X, Liu Y W, Shen Y, Wang Q S, Zhao J, Yang Z Q and Xiu F X 2016 Chin. Phys. B25 017202 [8] Wang H H, Luo X G, Chen W W, Wang N Z, Lei B, Meng F B, Shang C, Ma L K, Wu T, Dai X, Wang Z F and Chen X H 2018 Sci. Bull.63 411 [9] Toberer E S, Zevalkink A and Snyder G J 2011 J. Mater. Chem.21 15843 [10] Yue S Y, Chorsi H T, Goyal M, Schumann T, Yang R Q, Xu T S, Deng B W, Stemmer S, Schuller J A and Liao B L 2019 Phys. Rev. Res.1 033101 [11] Yue S Y, Deng B W, Liu Y M, Quan Y J, Yang R Q and Liao B L 2020 Phys. Rev. B102 235428 [12] Sharafeev A, Gnezdilov V, Sankar R, Chou F C and Lemmens P 2017 Phys. Rev. B95 235148 [13] Pietraszko A and Lukaszewicz K 1973 Phys. Status Solidi A18 723 [14] Gamża M, Abrami P, Gammond L V D, Ayres J, Osmond I, Muramatsu T, Armstrong R, Perryman H, Daisenberger D, Das S and Friedemann S 2021 Phys. Rev. Mater.5 024209 [15] Gupta S N, Muthu D V S, Shekhar C, Sankar R, Felser C and Sood A K 2017 Europhys. Lett.120 57003 [16] Zhang S, Wu Q, Schoop L, Ali M N, Shi Y G, Ni N, Gibson Q, Jiang S, Sidorov V, Yi W, Guo J, Zhou Y Z, Wu D S, Gao P W, Gu D C, Zhang C, Jiang S, Yang K, Li A G, Li Y C, Li X D, Liu J, Dai X, Fang Z, Cava R J, Sun L L and Zhao Z X 2015 Phys. Rev. B91 165133 [17] Küchler R, Bauer T, Brando M and Steglich F 2012 Rev. Sci. Instru.83 095102 [18] Lüthi B 2005 Physical Acoustics in the Solid State (Berlin: Springer-Verlag) [19] Sharma G, Goswami P and Tewari S 2016 Phys. Rev. B93 035116 [20] Zhou H, Cai Y, Zhang G and Zhang Y W 2016 Phys. Rev. B94 045423 [21] Bartkowski K, Rafalowicz J and Zdanowicz W 1986 Int. J. Thermophys.7 765 [22] Simoncelli M, Marzari N and Mauri F 2019 Nat. Phys.15 809 [23] Tritt T 2004 Thermal conductivity: theory, properties and applications (New York: Kluwer Academic) [24] Chen Z W, Zhang X Y and Pei Y Z 2018 Adv. Mater.30 1705617 [25] Matsuhira K, Sekine C, Wakeshima M, Hinatsu Y, Namiki T, Takeda K, Shirotani I, Sugawara H, Kikuchi D and Sato H 2009 J. Phys. Soc. Jpn.78 124601 [26] Bentien A, Johnsen S, Madsen G K H, Iversen B B and Steglich F 2007 EPL80 17008 [27] Zhu J, Feng T L, Mills S, Wang P P, Wu X W, Zhang L Y, Pantelides S T, Du X and Wang X J 2018 ACS Appl. Mater. Interfaces10 40740
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.