Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 127202    DOI: 10.1088/1674-1056/ac7f8d
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Tunable terahertz acoustic-phonon emission from monolayer molybdenum disulfide

Cheng-Xiang Zhao(赵承祥)1,†, Miao-Miao Zheng(郑苗苗)1, Yuan Qie(郄媛)1, and Fang-Wei Han(韩方微)2
1 College of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China;
2 School of Medical Information Engineering, Jining Medical University, Jining 272067, China
Abstract  The acoustic-phonon emission from monolayer molybdenum disulfide (ML-MoS2) driven by a direct-current electric field is studied theoretically using the Boltzmann equation method. It is found that the Cerenkov emission of terahertz acoustic-phonons can be generated when a very weak electric field is applied to ML-MoS2. The physical mechanisms of acoustic-phonon emission are analyzed from the perspective of condensed matter physics. The acoustic-phonon emission from ML-MoS2 is also compared with those from graphene and GaAs. The results reveal that the frequencies of acoustic-phonons generated by ML-MoS2 are between the frequencies of those generated from GaAs and graphene. The results of this work suggest that the ML-MoS2 can make up for graphene and GaAs in respect of acoustic-phonon emission and be used in tunable hypersonic devices such as terahertz sound sources.
Keywords:  acoustic-phonon emission      terahertz      monolayer molybdenum disulfide  
Received:  03 January 2022      Revised:  20 June 2022      Accepted manuscript online:  08 July 2022
PACS:  72.50.+b (Acoustoelectric effects)  
  68.60.Bs (Mechanical and acoustical properties)  
  63.20.kd (Phonon-electron interactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11604192), the Fundamental Research Program of Shanxi Province, China (Grant No. 202103021224250), the Science and Technology Innovation Project of Colleges and Universities of Shanxi Province of China (Grant No. 2020L0242), and the Start-up funding from Shanxi Normal University (Grant No. 0505/02070351).
Corresponding Authors:  Cheng-Xiang Zhao     E-mail:  cxzhaosxnu@163.com

Cite this article: 

Cheng-Xiang Zhao(赵承祥), Miao-Miao Zheng(郑苗苗), Yuan Qie(郄媛), and Fang-Wei Han(韩方微) Tunable terahertz acoustic-phonon emission from monolayer molybdenum disulfide 2022 Chin. Phys. B 31 127202

[1] Mante P A, Stoumpos C C, Kanatzidis M G and Yartsev A 2017 Nat. Commun. 8 14398
[2] Zheng Y, Feng S P and Yang S J 2016 Chin. Phys. B 25 067301
[3] Wang Y, Hurley D H, Hua Z, Pezeril T, Raetz S, Gusev V E, Tournat V and Khafizov M 2020 Nat. Commun. 11 1597
[4] Ge S F, Liu X F, Qiao X F, Wang Q S, Xu Z, Qiu J, Tan P H, Zhao J M and Sun D 2014 Sci. Rep. 4 5722
[5] Miller K, Qi J, Xu Y, Cho Y J, Liu X, Furdyna J K, Perakis I, Shahbazyan T V and Tolk N 2006 Phys. Rev. B 74 113313
[6] Shen X H, Lu Z H, Timalsina Y P, Lu T M, Washington M and Yamaguchi M 2018 Sci. Rep. 8 7054
[7] Bruggemann C, Akimov A V, Scherbakov A V, Bombeck M, Schneider C, Hofling S, Forchel A, Yakovlev D R and Bayer M 2012 Nat. Photon. 6 30
[8] Shinokita K, Reimann K, Woerner M, Elsaesser T, Hey R and Flytzanis C 2016 Phys. Rev. Lett. 116 075504
[9] Beardsley R P, Akimov A V, Henini M and Kent A J 2010 Phys. Rev. Lett. 104 085501
[10] Dong L C, Tian S C, Wang T and Lu Z F 2017 Chin. Opt. 10 0415
[11] Zhang Z B, Ma X B, Jin Z M, Ma G H and Yang J B 2012 Acta Phys. Sin. 61 097401 (in Chinese)
[12] Zhao X F, Zhang J, Chen S M and Xu W 2009 J. Appl. Phys. 105 104514
[13] Kubakaddi S S 2016 J. Appl. Phys. 119 195701
[14] Zhao C X, Xu W and Peeters F M 2013 Appl. Phys. Lett. 102 222101
[15] Sureshaa K, Kubakaddi S S, Mulimanib B G and Lee S L 2006 Physica E 33 50
[16] Huang Z X, Shi Y, Xin Y, Pu L, Zhang R and Zheng Y D 2005 Phys. Lett. A 342 181
[17] Komirenko S M and Kim K W 2000 Phys. Rev. B 62 7459
[18] Mak K F, Lee C G, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[19] Kaasbjerg K, Thygesen K S and Jacobsen K W 2012 Phys. Rev. B 85 115317
[20] Chen J H, Jang C, Xiao S, Ishigami M and Fuhrer M S 2008 Nat. Nanotech. 3 206
[21] Yu Z H, Ong Z Y, Li S L, Xu J B, Zhang G, Zhang Y W, Shi Y and Wang X R 2017 Adv. Funct. Mater. 27 1604093
[22] Dong H M, Xu W and Peeters F M 2011 J. Appl. Phys. 110 063704
[23] Li X D, Mullen Jeffrey T, Jin Z H, Borysenko Kostyantyn M, Nardelli M B and Kim K W 2013 Phys. Rev. B 87 115418
[24] Kubakaddi S S 2017 J. Appl. Phys. 121 145702
[25] Ong Z Y and Fischetti M V 2013 Phys. Rev. B 88 165316
[26] Dong H M 2013 Acta Phys. Sin. 62 206101 (in Chinese)
[27] Xu W, Peeters F M and Lu T C 2009 Phys. Rev. B 79 073403
[1] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[8] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[9] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[10] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[11] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[12] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[13] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[14] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[15] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
No Suggested Reading articles found!