Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 114203    DOI: 10.1088/1674-1056/abb307
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Polarization-insensitive complementary metamaterial structure based on graphene for independently tuning multiple transparency windows

Hailong Huang(黄海龙)1,2, Hui Xia(夏辉)2, and Hongjian Li(李宏建)2, †
1 The Research Department, Beijing Zhongkexin Electronics Equipment Co. Ltd, Beijing 101111, China
2 School of Physics and Electronics, Central South University, Changsha 410083, China
Abstract  

Polarization-insensitive multiple transparency windows are obtained with a graphene-based complementary metamaterial structure in terahertz regions, which is composed of two kinds of monolayer graphene perforated in shapes of a cross and four identical split rings that construct a resonator. The geometric parameters of resonators are different from each other. Numerical and theoretical results show that the quantum effect of Autler–Townes splitting is the key factor for appearance of transparency windows within the resonant dips. Further investigation demonstrates that by employing the fourfold-symmetry graphene complementary structure, polarization-independent transparency windows can be achieved. Moreover, multiple transparency windows can be separately manipulated over a broad frequency range via adjusting the chemical potential of the corresponding graphene resonators, and the bandwidth as well as resonance strength can also be tuned by changing the relative displacement between resonators each consisting of a cross and four split rings. The proposed metamaterial structure may be utilized in some practical applications with requirements of no polarization-varied loss and slowing the light speed.

Keywords:  graphene      polarization-independent      multiple transparency windows  
Received:  24 May 2020      Revised:  19 August 2020      Accepted manuscript online:  27 August 2020
Fund: the National Natural Science Foundation of China (Grant No. 61275174).
Corresponding Authors:  Corresponding author. E-mail: lihj398@126.com   

Cite this article: 

Hailong Huang(黄海龙), Hui Xia(夏辉), and Hongjian Li(李宏建) Polarization-insensitive complementary metamaterial structure based on graphene for independently tuning multiple transparency windows 2020 Chin. Phys. B 29 114203

Fig. 1.  

(a) The photograph of the unit cell of multi-band PIT MM structure with the detailed geometric parameters. (b)–(d) The preparation process for controlling chemical potential of graphene resonators via the adjustable method of two top electrostatic grating. (e) The picture of a practical device.

Fig. 2.  

Simulated transmission spectra of three graphene resonators: (a) large-size structure and (b) small-size structure. (c) and (d) Simulated transmission curves of G1 and G2 under different relative distances d1 and d2, respectively. (e)–(j) Z-component of magnetic field (Hz) of each transmission dip with normally incident wave.

Fig. 3.  

Simulated transmission spectra of the proposed MM structure with different relative displacements d1 (a)–(d) and d2 (e)–(h), respectively. (i)–(k) The Hz distributions of combined structure at the transmission dip for different d1 and d2.

Fig. 4.  

Simulated transmission spectra of the proposed MM structure with different chemical potentials (a) Ef1 and (b) Ef2. The corresponding group delay with different chemical potentials (c) Ef1 and (d) Ef2.

Fig. 5.  

(a) The transmission spectra of the proposed MM structure under different angles of the polarized wave. The Hz distributions of (b) α = 0° (TE mode) and (c) α = 90° (TM mode) at the first resonant dip.

Variable d1/mm ωD, 1/ωD, 2/THz ωQ, 1/ωQ, 2/THz g1/g2/THz γD, 1/γD, 2/THz γQ, 1/γQ, 1/THz κ1/κ2/THz
90(d2 = 60) 11.28/15.87 11.46/15.56 0.11/0.03 0.28/0.09 0.15/0.05 4.89/3.45
100(d2 = 60) 11.51/15.81 11.65/15.68 0.16/0.03 0.25/0.07 0.13/0.04 4.42/3.45
110(d2 = 60) 11.72/15.83 11.79/15.62 0.18/0.03 0.24/0.05 0.12/0.03 4.03/3.45
120(d2 = 60) 11.95/15.79 11.83/15.60 0.21/0.03 0.21/0.03 0.10/0.01 3.72/3.45
Table 1.  

The fitting parameters for different d1.

Variable d1/mm ωD, 1/ωD, 2/THz ωQ, 1/ωQ, 2/THz g1/g2/THz γD, 1/γD, 2/THz γQ, 1/γQ, 1/THz κ1/κ2/THz
60(d1 = 90) 11.28/15.87 11.46/15.56 0.11/0.03 0.28/0.09 0.15/0.05 4.89/3.45
70(d1 = 90) 12.13/15.91 11.56/15.68 0.11/0.08 0.23/0.06 0.14/0.04 4.89/3.01
80(d1 = 90) 12.21/15.98 11.67/15.62 0.11/0.12 0.20/0.04 0.10/0.03 4.89/2.86
90(d1 = 90) 12.36/16.13 11.96/15.60 0.11/0.15 0.18/0.02 0.07/0.02 4.89/2.12
Table 2.  

The fitting parameters for different d2.

[1]
Autler S H, Townes C H 1955 Phys. Rev. 100 703 DOI: 10.1103/PhysRev.100.703
[2]
Boller K J, Imamoglu A, Harris S E 1991 Phys. Rev. Lett. 66 2593 DOI: 10.1103/PhysRevLett.66.2593
[3]
Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633 DOI: 10.1103/RevModPhys.77.633
[4]
He Z H, Li H J, Li B X, Chen Z Q, Xu H, Zheng M F 2016 Opt. Lett. 41 5206 DOI: 10.1364/OL.41.005206
[5]
Xu H, Li H J, He Z H, Chen Z Q, Zheng M F, Zhao M Z 2017 Opt. Express 25 20780 DOI: 10.1364/OE.25.020780
[6]
Zhan S P, Li H J, He Z H, Li B X, Chen Z Q, Xu H 2015 Opt. Express 23 20313 DOI: 10.1364/OE.23.020313
[7]
Li Q, Liu S S, Zhang X Q, Wang S, Chen T 2020 Opt. Express 28 8792 DOI: 10.1364/OE.389292
[8]
Wang Q, Yu L, Gao H X, Chu S W, Peng W 2019 Opt. Express 27 35012 DOI: 10.1364/OE.27.035012
[9]
Jia W, Ren P W, Tian Y C, Fan C Z 2019 Chin. Phys. B 28 026102 DOI: 10.1088/1674-1056/28/2/026102
[10]
Zhu C, Tan C, Huang G 2013 Phys. Rev. A 87 043813 DOI: 10.1103/PhysRevA.87.043813
[11]
Tan C, Huang G 2014 J. Opt. Soc. Am. B 31 704 DOI: 10.1364/JOSAB.31.000704
[12]
Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401 DOI: 10.1103/PhysRevLett.101.047401
[13]
Li D, Huang H L, Xia H, Zeng J P, Li H J, Xie D 2018 Results Phys. 11 659 DOI: 10.1016/j.rinp.2018.10.014
[14]
Zhang G Q, Lan C W, Gao R, Zhou J 2017 J. Magn. Magn. Mater. 436 57 DOI: 10.1016/j.jmmm.2017.04.027
[15]
Khatua S, Chang W S, Swanglap P, Olson J, Link S 2011 Nano. Lett. 11 3797 DOI: 10.1021/nl201876r
[16]
Chuang F T, Chen P Y, Chen T C, Chien C H, Li B J 2007 Nanotechnology 18 395702 DOI: 10.1088/0957-4484/18/39/395702
[17]
Hanson G W 2008 IEEE Trans. Anten. Propag. 56 747 DOI: 10.1109/TAP.2008.917005
[18]
Sarkar R, Ghindani D, Devi K M, Prabhu S S, Ahmad A, Kumar G 2019 Sci. Rep. 9 18068 DOI: 10.1038/s41598-019-54414-5
[19]
He Y W, Zhang J F, Xu W, Guo C C, Liu K, Yuan X D, Zhu Z H 2019 Sci. Rep. 9 20312 DOI: 10.1038/s41598-019-56745-9
[20]
Bhushan S, Chauhan V S, Dixith M, Easwaran R K 2019 Phys. Lett. A 383 125885 DOI: 10.1016/j.physleta.2019.125885
[21]
Zhao S M, Zhuang P 2014 Chin. Phys. B 23 054203 DOI: 10.1088/1674-1056/23/5/054203
[22]
Khazaee S, Granpayeh N 2018 Opt. Commun. 406 199 DOI: 10.1016/j.optcom.2017.02.033
[23]
Huang H L, Xia H, Guo Z B, Li H J, Xie D 2018 Opt. Commun. 424 163 DOI: 10.1016/j.optcom.2018.04.060
[24]
Dong Z W, Sun C, Si J G, Deng X X 2017 Opt. Express 25 12251 DOI: 10.1364/OE.25.012251
[25]
Andryieuski A, Layrinenko A V 2013 Opt. Express 21 9144 DOI: 10.1364/OE.21.009144
[26]
Hwang E H, Hu B Y K, Sarma S D 2007 Phys. Rev. B 76 115434 DOI: 10.1103/PhysRevB.76.115434
[27]
Chen J H, Jang C, Xiao S D, Ishigami M, Fuhrer M S 2008 Nat. Nanotech. 3 206 DOI: 10.1038/nnano.2008.58
[28]
Huang H L, Xia H, Guo Z B, Chen Y, Li H J 2017 Chin. Phys. B 26 025207 DOI: 10.1088/1674-1056/26/2/025207
[29]
Huang H L, Xia H, Guo Z B, Ding X, Li H J 2017 Chin. Phys. Lett. 34 117801 DOI: 10.1088/0256-307X/34/11/117801
[30]
Tassin P, Koschny T, Kafesaki M, Soukoulis C M 2012 Nat. Photon. 6 259 DOI: 10.1038/nphoton.2012.27
[31]
Jian W, Bing L W, Bing X, Feng G X, Gao D Z 2014 J. Phys. D: Appl. Phys. 47 325102 DOI: 10.1088/0022-3727/47/32/325102
[32]
Anisimov P M, Dowling J P, Sanders B C 2011 Phys. Rev. Lett. 107 163604 DOI: 10.1103/PhysRevLett.107.163604
[33]
Ding J, Arigong B, Ren H, Zhou M, Shao J, Lu M, Chai Y, Lin Y K, Zhang H L 2015 Sci. Rep. 4 6128 DOI: 10.1038/srep06128
[34]
Artar A, Yanik A A, Altug H 2011 Nano. Lett. 11 1685 DOI: 10.1021/nl200197j
[35]
Sun C, Dong Z, Si J, Deng X 2017 Opt. Express 25 1242 DOI: 10.1364/OE.25.001242
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[3] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[6] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[7] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[8] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[9] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[10] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[11] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[12] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[13] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[14] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[15] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
No Suggested Reading articles found!