Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 037103    DOI: 10.1088/1674-1056/28/3/037103

Realization of low-energy type-Ⅱ Dirac fermions in (Ir1-xPtx)Te2 superconductors

Bin-Bin Fu(付彬彬)1,2, Chang-Jiang Yi(伊长江)1,2, Zhi-Jun Wang(王志俊)1, Meng Yang(杨萌)1,2, Bai-Qing Lv(吕佰晴)1,2, Xin Gao(高鑫)1,2, Man Li(李满)3,4, Yao-Bo Huang(黄耀波)3, Hong-Ming Weng(翁红明)1,5, You-Guo Shi(石友国)1,5, Tian Qian(钱天)1,5,6, Hong Ding(丁洪)1,6
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China;
4 Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China;
5 Songshan Lake Materials Laboratory, Dongguan 523808, China;
6 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China

Topological Dirac semimetals (DSMs) present a kind of topologically nontrivial quantum state of matter, which has massless Dirac fermions in the bulk and topologically protected states on certain surfaces. In superconducting DSMs, the effects of their nontrivial topology on superconducting pairing could realize topological superconductivity in the bulk or on the surface. As superconducting pairing takes place at the Fermi level EF, to make the effects possible, the Dirac points should lie in the vicinity of EF so that the topological electronic states can participate in the superconducting paring. Here, we show using angle-resolved photoelectron spectroscopy that in a series of (Ir1-xPtx)Te2 compounds, the type-Ⅱ Dirac points reside around EF in the superconducting region, in which the bulk superconductivity has a maximum Tc of~3 K. The realization of the coexistence of bulk superconductivity and low-energy Dirac fermions in (Ir1-xPtx)Te2 paves the way for studying the effects of the nontrivial topology in DSMs on the superconducting state.

Keywords:  type-II Dirac semimetal      superconductor      topological superconducting      angle-resolved photoemission spectroscopy (ARPES)      substitution  
Received:  12 January 2019      Revised:  30 January 2019      Accepted manuscript online: 
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  79.60.-i (Photoemission and photoelectron spectra)  
  73.20.At (Surface states, band structure, electron density of states)  
  74.70.-b (Superconducting materials other than cuprates)  

Project supported by the Ministry of Science and Technology of China (Grant Nos. 2016YFA0300600, 2016YFA0401000, 2016YFA0302400, and 2017YFA0302901), the National Natural Science Foundation of China (Grant Nos. 11622435, U1832202, and 11674369), the Chinese Academy of Sciences (Grant Nos. QYZDB-SSW-SLH043, XDB07000000, and XDPB08-1), and the Beijing Municipal Science and Technology Commission, China (Grant No. Z171100002017018).

Corresponding Authors:  You-Guo Shi, Tian Qian, Hong Ding     E-mail:;;

Cite this article: 

Bin-Bin Fu(付彬彬), Chang-Jiang Yi(伊长江), Zhi-Jun Wang(王志俊), Meng Yang(杨萌), Bai-Qing Lv(吕佰晴), Xin Gao(高鑫), Man Li(李满), Yao-Bo Huang(黄耀波), Hong-Ming Weng(翁红明), You-Guo Shi(石友国), Tian Qian(钱天), Hong Ding(丁洪) Realization of low-energy type-Ⅱ Dirac fermions in (Ir1-xPtx)Te2 superconductors 2019 Chin. Phys. B 28 037103

[1] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[2] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[3] Hor Y S, Williams A J, Checkelsky J G, Roushan P, Seo J, Xu Q, Zandbergen H W, Yazdani A, Ong N P and Cava R J 2010 Phys. Rev. Lett. 104 057001
[4] Zhang J L, Zhang S J, Weng H M, Zhang W, Yang L X, Liu Q Q, Feng S M, Wang X C, Yu R C, Cao L Z, Wang L, Yang W G, Liu H Z, Zhao W Y, Zhang S C, Dai X, Fang Z and Jin C Q 2011 Proc. Natl. Acad. Sci. USA 108 24
[5] Wang M X, Liu C H, Xu J P, Yang F, Miao L, Yao M Y, Gao C L, Shen C Y, Ma X C, Chen X, Xu Z A, Liu Y, Zhang S C, Qian D, Jia J F and Xue Q K 2012 Science 336 52
[6] Sasaki S, Ren Z, Taskin A A, Segawa K, Fu L and Ando Y 2012 Phys. Rev. Lett. 109 217004
[7] Chadov S, Qi X L, Kubler J, Fecher G H, Felser C and Zhang S C 2010 Nat. Mater. 9 541
[8] Lin H, Wray L A, Xia Y Q, Xu S Y, Jia S, Cava R J, Bansil A and Hasan M Z 2010 Nat. Mater. 9 546
[9] Liu C, Lee Y, Kondo T, Mun E D, Caudle M, Harmon B N, Bud'ko S L, Canfield P C and Kaminski A 2011 Phys. Rev. B 83 205133
[10] Liu Z K, Yang L X, Wu S C, Shekhar C, Jiang J, Yang H F, Zhang Y, Mo S K, Hussain Z, Yan B, Felser C and Chen Y L 2016 Nat. Commun. 7 12924
[11] Sakano M, Okawa K, Kanou M, Sanjo H, Okuda T, Sasagawa T and Ishizaka K 2015 Nat. Commun. 6 8595
[12] Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z J, Wen J S, Gu G D, Ding H and Shin S 2018 Science 360 182
[13] Wang D F, Kong L Y, Fan P, Chen H, Zhu S Y, Liu W Y, Cao L, Sun Y J, Du S X, Schneeloch J, Zhong R D, Gu G D, Fu F, Ding H and Gao H J 2018 Science 362 333
[14] Kobayashi S and Sato M 2015 Phys. Rev. Lett. 115 187001
[15] Hashimoto T, Kobayashi S, Tanaka Y and Sato M 2016 Phys. Rev. B 94 014510
[16] Hosur P, Dai X, Fang Z and Qi X L 2014 Phys. Rev. B 90 045130
[17] Aggarwal L, Gaurav A, Thakur G S, Haque Z, Ganguli A K and Sheet G 2016 Nat. Mater. 15 32
[18] Wang H, Wang H C, Liu H W, Lu H, Yang W H, Jia S, Liu X J, Xie X C, Wei J and Wang J 2016 Nat. Mater. 15 38
[19] He L P, Jia Y T, Zhang S J, Hong X C, Jin C Q and Li S Y 2016 Npj Quant. Mat. 1 16014
[20] Yan M Z, Huang H Q, Zhang K N, Wang E Y, Yao W, Deng K, Wan G L, Zhang H Y, Arita M, Yang H T, Sun Z, Yao H, Wu Y, Fan S S, Duan W H and Zhou S Y 2017 Nat. Commun. 8 257
[21] Fei F C, Bo X Y, Wang R, Wu B, Jiang J, Fu D Z, Gao M, Zheng H, Chen Y L, Wang X F, Bu H J, Song F Q, Wan X G, Wang B G and Wang G H 2017 Phys. Rev. B 96 041201
[22] Noh H J, Jeong J, Cho E J, Kim K, Min B I and Park B G 2017 Phys. Rev. Lett. 119 016401
[23] Zhang K N, Yan M Z, Zhang H X, Huang H Q, Arita M, Sun Z, Duan W H, Wu Y and Zhou S Y 2017 Phys. Rev. B 96 125102
[24] Wang Z J, Sun Y, Chen X Q, Franchini C, Xu G, Weng H M, Dai X and Fang Z 2012 Phys. Rev. B 85 195320
[25] Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z and Chen Y L 2014 Science 343 864
[26] Wang Z J, Weng H M, Wu Q S, Dai X and Fang Z 2013 Phys. Rev. B 88 125427
[27] Liu Z K, Jiang J, Zhou B, Wang Z J, Zhang Y, Weng H M, Prabhakaran D, Mo S K, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen Z X, Feng D L, Hussain Z and Chen Y L 2014 Nat. Mater. 13 677
[28] Soluyanov A A, Gresch D, Wang Z J, Wu Q S, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495
[29] Deng K, Wan G L, Deng P, Zhang K N, Ding S J, Wang E Y, Yan M Z, Huang H Q, Zhang H Y, Xu Z L, Denlinger J, Fedorov A, Yang H T, Duan W H, Yao H, Wu Y, Fan S S, Zhang H J, Chen X and Zhou S Y 2016 Nat. Phys. 12 1105
[30] Huang L, McCormick T M, Ochi M, Zhao Z Y, Suzuki M T, Arita R, Wu Y, Mou D X, Cao H B, Yan J Q, Trivedi N and Kaminski A 2016 Nat. Mater. 15 1155
[31] Fei F C, Bo X Y, Wang P D, Ying J H, Li J, Chen K, Dai Q, Chen B, Sun Z, Zhang M H, Qu F M, Zhang Y, Wang Q H, Wang X F, Cao L, Bu H J, Song F Q, Wan X G and Wang B G 2018 Adv. Mater. 30 1801556
[32] Kresse G and Hafner J 1993 Phys. Rev. B 48 13115
[33] Yang J J, Choi Y J, Oh Y S, Hogan A, Horibe Y, Kim K, Min B I and Cheong S W 2012 Phys. Rev. Lett. 108 116402
[1] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[2] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[3] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[4] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[5] Effect of thickness on magnetic properties of single domain GdBCO bulk superconductors
Ping Gao(高平), Wan-Min Yang(杨万民), Ting-Ting Wu(武婷婷), Miao Wang(王妙), and Kun Liu(刘坤). Chin. Phys. B, 2023, 32(2): 027401.
[6] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[7] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[8] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[9] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[10] Substitutions of vertex configuration of Ammann-Beenker tiling in framework of Ammann lines
Jia-Rong Ye(叶家容), Wei-Shen Huang(黄伟深), and Xiu-Jun Fu(傅秀军). Chin. Phys. B, 2022, 31(8): 086101.
[11] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[12] Microstructural, magnetic and dielectric performance of rare earth ion (Sm3+)-doped MgCd ferrites
Dandan Wen(文丹丹), Xia Chen(陈霞), Dasen Luo(骆大森), Yi Lu(卢毅),Yixin Chen(陈一鑫), Renpu Li(黎人溥), and Wei Cui(崔巍). Chin. Phys. B, 2022, 31(7): 078503.
[13] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[14] Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5
Linwei Huai(淮琳崴), Yang Luo(罗洋), Samuel M. L. Teicher, Brenden R. Ortiz, Kaize Wang(王铠泽),Shuting Peng(彭舒婷), Zhiyuan Wei(魏志远), Jianchang Shen(沈建昌), Bingqian Wang(王冰倩), Yu Miao(缪宇),Xiupeng Sun(孙秀鹏), Zhipeng Ou(欧志鹏), Stephen D. Wilson, and Junfeng He(何俊峰). Chin. Phys. B, 2022, 31(5): 057403.
[15] A DFT/TD-DFT study of effect of different substituent on ESIPT fluorescence features of 2-(2'-hydroxyphenyl)-4-chloro- methylthiazole derivatives
Shen-Yang Su(苏申阳), Xiu-Ning Liang(梁秀宁), and Hua Fang(方华). Chin. Phys. B, 2022, 31(3): 038202.
No Suggested Reading articles found!