|
|
Realization of low-energy type-Ⅱ Dirac fermions in (Ir1-xPtx)Te2 superconductors |
Bin-Bin Fu(付彬彬)1,2, Chang-Jiang Yi(伊长江)1,2, Zhi-Jun Wang(王志俊)1, Meng Yang(杨萌)1,2, Bai-Qing Lv(吕佰晴)1,2, Xin Gao(高鑫)1,2, Man Li(李满)3,4, Yao-Bo Huang(黄耀波)3, Hong-Ming Weng(翁红明)1,5, You-Guo Shi(石友国)1,5, Tian Qian(钱天)1,5,6, Hong Ding(丁洪)1,6 |
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China;
4 Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China;
5 Songshan Lake Materials Laboratory, Dongguan 523808, China;
6 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Topological Dirac semimetals (DSMs) present a kind of topologically nontrivial quantum state of matter, which has massless Dirac fermions in the bulk and topologically protected states on certain surfaces. In superconducting DSMs, the effects of their nontrivial topology on superconducting pairing could realize topological superconductivity in the bulk or on the surface. As superconducting pairing takes place at the Fermi level EF, to make the effects possible, the Dirac points should lie in the vicinity of EF so that the topological electronic states can participate in the superconducting paring. Here, we show using angle-resolved photoelectron spectroscopy that in a series of (Ir1-xPtx)Te2 compounds, the type-Ⅱ Dirac points reside around EF in the superconducting region, in which the bulk superconductivity has a maximum Tc of~3 K. The realization of the coexistence of bulk superconductivity and low-energy Dirac fermions in (Ir1-xPtx)Te2 paves the way for studying the effects of the nontrivial topology in DSMs on the superconducting state.
|
Received: 12 January 2019
Revised: 30 January 2019
Accepted manuscript online:
|
PACS:
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
79.60.-i
|
(Photoemission and photoelectron spectra)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
Fund: Project supported by the Ministry of Science and Technology of China (Grant Nos. 2016YFA0300600, 2016YFA0401000, 2016YFA0302400, and 2017YFA0302901), the National Natural Science Foundation of China (Grant Nos. 11622435, U1832202, and 11674369), the Chinese Academy of Sciences (Grant Nos. QYZDB-SSW-SLH043, XDB07000000, and XDPB08-1), and the Beijing Municipal Science and Technology Commission, China (Grant No. Z171100002017018). |
Corresponding Authors:
You-Guo Shi, Tian Qian, Hong Ding
E-mail: ygshi@iphy.ac.cn;tqian@iphy.ac.cn;ingh@iphy.ac.cn
|
Cite this article:
Bin-Bin Fu(付彬彬), Chang-Jiang Yi(伊长江), Zhi-Jun Wang(王志俊), Meng Yang(杨萌), Bai-Qing Lv(吕佰晴), Xin Gao(高鑫), Man Li(李满), Yao-Bo Huang(黄耀波), Hong-Ming Weng(翁红明), You-Guo Shi(石友国), Tian Qian(钱天), Hong Ding(丁洪) Realization of low-energy type-Ⅱ Dirac fermions in (Ir1-xPtx)Te2 superconductors 2019 Chin. Phys. B 28 037103
|
[1] |
Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
|
[2] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[3] |
Hor Y S, Williams A J, Checkelsky J G, Roushan P, Seo J, Xu Q, Zandbergen H W, Yazdani A, Ong N P and Cava R J 2010 Phys. Rev. Lett. 104 057001
|
[4] |
Zhang J L, Zhang S J, Weng H M, Zhang W, Yang L X, Liu Q Q, Feng S M, Wang X C, Yu R C, Cao L Z, Wang L, Yang W G, Liu H Z, Zhao W Y, Zhang S C, Dai X, Fang Z and Jin C Q 2011 Proc. Natl. Acad. Sci. USA 108 24
|
[5] |
Wang M X, Liu C H, Xu J P, Yang F, Miao L, Yao M Y, Gao C L, Shen C Y, Ma X C, Chen X, Xu Z A, Liu Y, Zhang S C, Qian D, Jia J F and Xue Q K 2012 Science 336 52
|
[6] |
Sasaki S, Ren Z, Taskin A A, Segawa K, Fu L and Ando Y 2012 Phys. Rev. Lett. 109 217004
|
[7] |
Chadov S, Qi X L, Kubler J, Fecher G H, Felser C and Zhang S C 2010 Nat. Mater. 9 541
|
[8] |
Lin H, Wray L A, Xia Y Q, Xu S Y, Jia S, Cava R J, Bansil A and Hasan M Z 2010 Nat. Mater. 9 546
|
[9] |
Liu C, Lee Y, Kondo T, Mun E D, Caudle M, Harmon B N, Bud'ko S L, Canfield P C and Kaminski A 2011 Phys. Rev. B 83 205133
|
[10] |
Liu Z K, Yang L X, Wu S C, Shekhar C, Jiang J, Yang H F, Zhang Y, Mo S K, Hussain Z, Yan B, Felser C and Chen Y L 2016 Nat. Commun. 7 12924
|
[11] |
Sakano M, Okawa K, Kanou M, Sanjo H, Okuda T, Sasagawa T and Ishizaka K 2015 Nat. Commun. 6 8595
|
[12] |
Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z J, Wen J S, Gu G D, Ding H and Shin S 2018 Science 360 182
|
[13] |
Wang D F, Kong L Y, Fan P, Chen H, Zhu S Y, Liu W Y, Cao L, Sun Y J, Du S X, Schneeloch J, Zhong R D, Gu G D, Fu F, Ding H and Gao H J 2018 Science 362 333
|
[14] |
Kobayashi S and Sato M 2015 Phys. Rev. Lett. 115 187001
|
[15] |
Hashimoto T, Kobayashi S, Tanaka Y and Sato M 2016 Phys. Rev. B 94 014510
|
[16] |
Hosur P, Dai X, Fang Z and Qi X L 2014 Phys. Rev. B 90 045130
|
[17] |
Aggarwal L, Gaurav A, Thakur G S, Haque Z, Ganguli A K and Sheet G 2016 Nat. Mater. 15 32
|
[18] |
Wang H, Wang H C, Liu H W, Lu H, Yang W H, Jia S, Liu X J, Xie X C, Wei J and Wang J 2016 Nat. Mater. 15 38
|
[19] |
He L P, Jia Y T, Zhang S J, Hong X C, Jin C Q and Li S Y 2016 Npj Quant. Mat. 1 16014
|
[20] |
Yan M Z, Huang H Q, Zhang K N, Wang E Y, Yao W, Deng K, Wan G L, Zhang H Y, Arita M, Yang H T, Sun Z, Yao H, Wu Y, Fan S S, Duan W H and Zhou S Y 2017 Nat. Commun. 8 257
|
[21] |
Fei F C, Bo X Y, Wang R, Wu B, Jiang J, Fu D Z, Gao M, Zheng H, Chen Y L, Wang X F, Bu H J, Song F Q, Wan X G, Wang B G and Wang G H 2017 Phys. Rev. B 96 041201
|
[22] |
Noh H J, Jeong J, Cho E J, Kim K, Min B I and Park B G 2017 Phys. Rev. Lett. 119 016401
|
[23] |
Zhang K N, Yan M Z, Zhang H X, Huang H Q, Arita M, Sun Z, Duan W H, Wu Y and Zhou S Y 2017 Phys. Rev. B 96 125102
|
[24] |
Wang Z J, Sun Y, Chen X Q, Franchini C, Xu G, Weng H M, Dai X and Fang Z 2012 Phys. Rev. B 85 195320
|
[25] |
Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z and Chen Y L 2014 Science 343 864
|
[26] |
Wang Z J, Weng H M, Wu Q S, Dai X and Fang Z 2013 Phys. Rev. B 88 125427
|
[27] |
Liu Z K, Jiang J, Zhou B, Wang Z J, Zhang Y, Weng H M, Prabhakaran D, Mo S K, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen Z X, Feng D L, Hussain Z and Chen Y L 2014 Nat. Mater. 13 677
|
[28] |
Soluyanov A A, Gresch D, Wang Z J, Wu Q S, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495
|
[29] |
Deng K, Wan G L, Deng P, Zhang K N, Ding S J, Wang E Y, Yan M Z, Huang H Q, Zhang H Y, Xu Z L, Denlinger J, Fedorov A, Yang H T, Duan W H, Yao H, Wu Y, Fan S S, Zhang H J, Chen X and Zhou S Y 2016 Nat. Phys. 12 1105
|
[30] |
Huang L, McCormick T M, Ochi M, Zhao Z Y, Suzuki M T, Arita R, Wu Y, Mou D X, Cao H B, Yan J Q, Trivedi N and Kaminski A 2016 Nat. Mater. 15 1155
|
[31] |
Fei F C, Bo X Y, Wang P D, Ying J H, Li J, Chen K, Dai Q, Chen B, Sun Z, Zhang M H, Qu F M, Zhang Y, Wang Q H, Wang X F, Cao L, Bu H J, Song F Q, Wan X G and Wang B G 2018 Adv. Mater. 30 1801556
|
[32] |
Kresse G and Hafner J 1993 Phys. Rev. B 48 13115
|
[33] |
Yang J J, Choi Y J, Oh Y S, Hogan A, Horibe Y, Kim K, Min B I and Cheong S W 2012 Phys. Rev. Lett. 108 116402
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|