|
|
Evolution of incommensurate superstructure and electronic structure with Pb substitution in (Bi2-xPbx)Sr2CaCu2O8+δ superconductors |
Jing Liu(刘静)1,2, Lin Zhao(赵林)1, Qiang Gao(高强)1,2, Ping Ai(艾平)1,2, Lu Zhang(张璐)1,2, Tao Xie(谢涛)1,2, Jian-Wei Huang(黄建伟)1,2, Ying Ding(丁颖)1,2, Cheng Hu(胡成)1,2, Hong-Tao Yan(闫洪涛)1,2, Chun-Yao Song(宋春尧)1,2, Yu Xu(徐煜)1,2, Cong Li(李聪)1,2, Yong-Qing Cai(蔡永青)1,2, Hong-Tao Rong(戎洪涛)1,2, Ding-Song Wu(吴定松)1,2, Guo-Dong Liu(刘国东)1, Qing-Yan Wang(王庆艳)1, Yuan Huang(黄元)1, Feng-Feng Zhang(张丰丰)3, Feng Yang(杨峰)3, Qin-Jun Peng(彭钦军)3, Shi-Liang Li(李世亮)1,2,5, Huai-Xin Yang(杨槐馨)1,2, Jian-Qi Li(李建奇)1,2,5, Zu-Yan Xu(许祖彦)3, Xing-Jiang Zhou(周兴江)1,2,4,5 |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China;
5 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China |
|
|
Abstract High-quality Bi2-xPbxSr2CaCu2O8+δ (Bi2212) single crystals have been successfully grown by the traveling solvent floating zone technique with a wide range of Pb substitution (x=0-0.8). The samples are characterized by transmission electron microscope (TEM) and measured by high resolution laser-based angle-resolved photoemission spectroscopy (ARPES) with different photon energies. A systematic evolution of the electronic structure and superstructure with Pb substitution has been revealed for the first time. The superstructure shows a significant change with Pb substitution and the incommensurate modulation vector (Q) decreases with increasing Pb substitution. In the meantime, the superstructure intensity from ARPES measurements also decreases dramatically with increasing Pb concentration. The superstructure in Bi2212 can be effectively suppressed by Pb substitution and it nearly disappears with a Pb substitution of x=0.8. We also find that the superstructure bands in ARPES measurements depend sensitively on the photon energy of lasers used; they can become even stronger than the main band when using a laser photon energy of 10.897 eV. These results provide important information on the origin of the incommensurate superstructure and its control and suppression in bismuth-based high temperature superconductors.
|
Received: 23 May 2019
Revised: 25 May 2019
Accepted manuscript online:
|
PACS:
|
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
79.60.-i
|
(Photoemission and photoelectron spectra)
|
|
71.18.+y
|
(Fermi surface: calculations and measurements; effective mass, g factor)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0300300 and 2017YFA0302900), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos. XDB07020300 and XDB25000000), the National Natural Science Foundation of China (Grant Nos. 11334010 and 11534007), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2017013). |
Corresponding Authors:
Lin Zhao, Xing-Jiang Zhou
E-mail: lzhao@iphy.ac.cn;XJZhou@iphy.ac.cn
|
Cite this article:
Jing Liu(刘静), Lin Zhao(赵林), Qiang Gao(高强), Ping Ai(艾平), Lu Zhang(张璐), Tao Xie(谢涛), Jian-Wei Huang(黄建伟), Ying Ding(丁颖), Cheng Hu(胡成), Hong-Tao Yan(闫洪涛), Chun-Yao Song(宋春尧), Yu Xu(徐煜), Cong Li(李聪), Yong-Qing Cai(蔡永青), Hong-Tao Rong(戎洪涛), Ding-Song Wu(吴定松), Guo-Dong Liu(刘国东), Qing-Yan Wang(王庆艳), Yuan Huang(黄元), Feng-Feng Zhang(张丰丰), Feng Yang(杨峰), Qin-Jun Peng(彭钦军), Shi-Liang Li(李世亮), Huai-Xin Yang(杨槐馨), Jian-Qi Li(李建奇), Zu-Yan Xu(许祖彦), Xing-Jiang Zhou(周兴江) Evolution of incommensurate superstructure and electronic structure with Pb substitution in (Bi2-xPbx)Sr2CaCu2O8+δ superconductors 2019 Chin. Phys. B 28 077403
|
[32] |
Gao Y A N, Lee P, Coppens P, Subramania M A and Sleight A W 1988 Science 241 954
|
[1] |
Tsuei C C and Kirtley J R 2000 Rev. Mod. Phys. 72 969
|
[33] |
Eibl O 1991 Physica C 175 419
|
[2] |
Timusk T and Statt B 1999 Rep. Prog. Phys. 62 61
|
[34] |
Heinrich H, Kostorz G, Heeb B and Gauckler L J 1994 Physica C 224 133
|
[35] |
Withers R L, Thompson J G, Wallenberg L R, Fitz Gerald J D, Anderson J S and Hyde B G 1988 J. Phys. C 21 6067
|
[36] |
Aebi P, Osterwalder J, Schwaller P, Schlapbach L, Shimoda M, Mochiku T and Kadowaki K 1994 Phys. Rev. Lett. 72 2757
|
[3] |
Damascelli A, Hussain Z and Shen Z X 2003 Rev. Mod. Phys. 75 473
|
[37] |
Osterwalder J, Aebi P, Schwaller P, Schlapbach L, Shimoda M, Mochiku T and Kadowaki K 1995 Appl. Phys. A 60 247
|
[4] |
Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
|
[38] |
Ding H, Bellman A F, Campuzano J C, Randeria M, Norman M R, Yokoya T, Takahashi T, KatayamaYoshida H, Mochiku T, Kadowaki K, Jennings G and Brivio G P 1996 Phys. Rev. Lett. 76 1533
|
[5] |
Keimer B, Kivelson S A, Norman M R, Uchida S and Zaanen J 2015 Nature 518 179
|
[39] |
Fretwell H M, Kaminski A, Mesot J, Campuzano J C, Norman M R, Randeria M, Sato T, Gatt R, Takahashi T and Kadowaki K 2000 Phys. Rev. Lett. 84 4449
|
[6] |
Campuzano J C, Norman M R and Randeria M 2004 Physics of Superconductors (Berlin: Springer) Vol. 2 p. 167
|
[40] |
Chong I, Hiroi Z, Izumi M, Shimoyama J, Nakayama Y, Kishio K, Terashima T, Bando Y and Takano M 1997 Science 276 770
|
[7] |
Zhou X J, Cuk T, Devereaux T, Nagaosa N and Shen Z X 2007 Handbook of High Temperature Superconductivity: Theory and Experiment (Berlin: Springer) p. 87
|
[41] |
Fournier P, Kapitulnik A and Marshall A F 1996 Physica C 257 291
|
[8] |
Zhou X J, He S L, Liu G D, Zhao L, Yu L and Zhang W T 2018 Rep. Prog. Phys. 81 062101
|
[42] |
Kendziora C, Qadri S B and Skelton E 1997 Phys. Rev. B 56 14717
|
[9] |
Shen Z X, Dessau D S, Wells B O, King D M, Spicer W E, Arko A J, Marshall D, Lombardo L W, Kapitulnik A, Dickinson P, Doniach S, DiCarlo J, Loeser T and Park C H 1993 Phys. Rev. Lett. 70 1553
|
[43] |
Schwaller P, Aebi P, Berger H, Beeli C, Osterwalder J and Schlapbach L 1995 J. Electron. Spectrosc. Relat. Phenom. 76 127
|
[10] |
Ding H, Norman M R, Campuzano J C, Randeria M, Bellman A F, Yokoya T, Takahashi T, Mochiku T and Kadowaki K 1996 Phys. Rev. B 54 9678
|
[44] |
Legner S, Borisenko S V, Durr C, Pichler T, Knupfer M, Golden M S, Fink J, Yang G, Abell S, Berger H, Muller R, Janowitz C and Reichardt G 2000 Phys. Rev. B 62 154
|
[45] |
Bogdanov P V, Lanzara A, Zhou X J, Kellar S A, Feng D L, Lu E D, Eisaki H, Shimoyama J I, Kishio K, Hussain Z and Shen Z X 2001 Phys. Rev. B 64 180505
|
[11] |
Hashimoto M, Nowadnick E A, He R H, Vishik I M, Moritz B, He Y, Tanaka K, Moore R G, Lu D H, Yoshida Y, Ishikado M, Sasagawa T, Fujita K, Ishida S, Uchida S, Eisaki H, Hussain Z, Devereaux T P and Shen Z X 2015 Nat. Mater. 14 37
|
[12] |
Sun X, Zhang W T, Zhao L, Liu G D, Gu G D, Peng Q J, Wang Z M, Zhang S J, Yang F, Chen C T, Xu Z Y and Zhou X J 2018 Chin. Phys. Lett. 35 017401
|
[46] |
Takeuchi T, Kaga H, Okada Y, Ikuta H, Baba T, Tsuda S and Shin S 2007 J. Electron. Spectrosc. Relat. Phenom. 156 452
|
[13] |
Marshall D S, Dessau D S, Loeser A G, Park C H, Matsuura A Y, Eckstein J N, Bozovic I, Fournier P, Kapitulnik A, Spicer W E and Shen Z X 1996 Phys. Rev. Lett. 76 4841
|
[47] |
Ziegler B, Muller B, Krapf A, Dwelk H, Janowitz C and Manzke R 2008 Phys. Rev. B 77 054520
|
[14] |
Loeser A G, Shen Z X, Dessau D S, Marshall D S, Park C H, Fournier P and Kapitulnik A 1996 Science 273 325
|
[48] |
Liu S Y, Zhang W T, Zhao L, Liu H Y, Wu Y, Liu G D, Dong X L and Zhou X J 2012 Chin. Phys. Lett. 29 087401
|
[15] |
Ding H, Yokoya T, Campuzano J C, Takahashi T, Randeria M, Norman M R, Mochiku T, Kadowaki K and Giapintzakis J 1996 Nature 382 51
|
[49] |
Zhang Y, Wang C L, Yu L, Liu G D, Liang A J, Huang J W, Nie S M, Sun X, Zhang Y X, Shen B, Liu J, Weng H M, Zhao L X, Chen G F, Jia X W, Hu C, Ding Y, Zhao W J, Gao Q, Li C, He S L, Zhao L, Zhang F F, Zhang S J, Yang F, Wang Z M, Peng Q J, Dai X, Fang Z, Xu Z Y, Chen C T and Zhou X J 2017 Nat. Commun. 8 15512
|
[16] |
Bogdanov P V, Lanzara A, Kellar S A, Zhou X J, Lu E D, Zheng W J, Gu G, Shimoyama J I, Kishio K, Ikeda H, Yoshizaki R, Hussain Z and Shen Z X 2000 Phys. Rev. Lett. 85 2581
|
[50] |
Guo C, Tian H F, Yang H X, Zhang B, Sun K, Sun X, Peng Y Y, Zhou X J and Li J Q 2017 Phys. Rev. Mater. 1 064802
|
[17] |
Johnson P D, Valla T, Fedorov A V, Yusof Z, Wells B O, Li Q, Moodenbaugh A R, Gu G D, Koshizuka N, Kendziora C, Jian S and Hinks D G 2001 Phys. Rev. Lett. 87 177007
|
[51] |
Feng D L, Armitage N P, Lu D H, Damascelli A, Hu J P, Bogdanov P, Lanzara A, Ronning F, Shen K M, Eisaki H, Kim C, Shen Z X, Shimoyama J and Kishio K 2001 Phys. Rev. Lett. 86 5550
|
[18] |
Kaminski A, Randeria M, Campuzano J C, Norman M R, Fretwell H, Mesot J, Sato T, Takahashi T and Kadowaki K 2001 Phys. Rev. Lett. 86 1070
|
[52] |
Mans A, Santoso I, Huang Y, Siu W K, Tavaddod S, Arpiainen V, Lindroos M, Berger H, Strocov V N, Shi M, Patthey L and Golden M S 2006 Phys. Rev. Lett. 96 107007
|
[19] |
Lanzara A, Bogdanov P V, Zhou X J, Kellar S A, Feng D L, Lu E D, Yoshida T, Eisaki H, Fujimori A, Kishio K, Shimoyama J I, Noda T, Uchida S, Hussain Z and Shen Z X 2001 Nature 412 510
|
[53] |
Bansil A and Lindroos M 1999 Phys. Rev. Lett. 83 5154
|
[20] |
Zhou X J, Yoshida T, Lanzara A, Bogdanov P V, Kellar S A, Shen K M, Yang W L, Ronning F, Sasagawa T, Kakeshita T, Noda T, Eisaki H, Uchida S, Lin C T, Zhou F, Xiong J W, Ti W X, Zhao Z X, Fujimori A, Hussain Z and Shen Z X 2003 Nature 423 398
|
[54] |
Zandbergen H W, Groen W A, Mijlhoff F C, Tendeloo G V and Amelinckx S 1988 Physica C 156 325
|
[21] |
Gromko A D, Fedorov A V, Chuang Y D, Koralek J D, Aiura Y, Yamaguchi Y, Oka K, Ando Y and Dessau D S 2003 Phys. Rev. B 68 174520
|
[55] |
Gai P L and Day P 1988 Physica C 152 335
|
[22] |
Kim T K, Kordyuk A A, Borisenko S V, Koitzsch A, Knupfer M, Berger H and Fink J 2003 Phys. Rev. Lett. 91 167002
|
[56] |
Zhang Y X, Hu C, Hu Y, Zhao L, Ding Y, Sun X, Liang A J, Zhang Y, He S L, Liu D F, Yu L, Liu G D, Dong X L, Gu G D, Chen C C, Xu Z Y and Zhou X J 2016 Sci. Bull. 61 1037
|
[23] |
Cuk T, Baumberger F, Lu D H, Ingle N, Zhou X J, Eisaki H, Kaneko N, Hussain Z, Devereaux T P, Nagaosa N and Shen Z X 2004 Phys. Rev. Lett. 93 117003
|
[57] |
Zhong Y G, Chen Y M, Guan J Y, Zhao J, Rao Z C, Tang C Y, Liu H J, Sun Y J and Ding H 2018 Sci. China-Phys. Mech. Astron. 61 127403
|
[24] |
Zhang W T, Liu G D, Zhao L, Liu H Y, Meng J Q, Dong X L, Lu W, Wen J S, Xu Z J, Gu G D, Sasagawa T, Wang G L, Zhu Y, Zhang H B, Zhou Y, Wang X Y, Zhao Z X, Chen C T, Xu Z Y and Zhou X J 2008 Phys. Rev. Lett. 100 107002
|
[58] |
Meng J Q, Liu G D, Zhang W T, Zhao L, Liu H Y, Lu W, Dong X L and Zhou X J 2009 Supercond. Sci. Technol. 22 045010
|
[25] |
He J F, Zhang W T, Bok J M, Mou D X, Zhao L, Peng Y Y, He S L, Liu G D, Dong X L, Zhang J, Wen J S, Xu Z J, Gu G D, Wang X Y, Peng Q J, Wang Z M, Zhang S J, Yang F, Chen C T, Xu Z Y, Choi H Y, Varma C M and Zhou X J 2013 Phys. Rev. Lett. 111 107005
|
[59] |
Chen Z, Peng Y Y, Wang Z, Song Y J, Meng J Q, Zhou X J and Li J Q 2013 Supercond. Sci. Technol. 26 055010
|
[26] |
Bok J M, Bae J J, Choi H Y, Varma C M, Zhang W T, He J F, Zhang Y X, Yu L and Zhou X J 2016 Sci. Adv. 2 e1501329
|
[60] |
Chong I, Terashima T, Bando Y, Takano M, Matsuda Y, Nagaoka T and Kumagai K 1997 Physica C 290 57
|
[27] |
Pan S H, O'Neal J P, Badzey R L, Chamon C, Ding H, Engelbrecht J R, Wang Z, Eisaki H, Uchida S, Guptak A K, Ng K W, Hudson E W, Lang K M and Davis J C 2001 Nature 413 282
|
[61] |
Mao Z Q, Fan C G, Shi L, Yao Z, Yang L, Wang Y and Zhang Y H 1993 Phys. Rev. B 47 14467
|
[28] |
Hoffman J E, Hudson E W, Lang K M, Madhavan V, Eisaki H, Uchida S and Davis J C 2002 Science 295 466
|
[62] |
Torardi C C, McCarron E M, Gai P L, Parise J B, Ghoroghchian J, Kang D B, Whangbo M H and Barry J C 1991 Physica C 176 347
|
[29] |
Kohsaka Y, Taylor C, Fujita K, Schmidt A, Lupien C, Hanaguri T, Azuma M, Takano M, Eisaki H, Takagi H, Uchida S and Davis J C 2007 Science 315 1380
|
[30] |
Hamidian M H, Edkins S D, Joo S H, Kostin A, Eisaki H, Uchida S, Lawler M J, Kim E A, Mackenzie A P, Fujita K, Lee J and Davis J C S 2016 Nature 532 343
|
[31] |
Fischer O, Kugler M, Maggio-Aprile I, Berthod C and Renner C 2007 Rev. Mod. Phys. 79 353
|
[32] |
Gao Y A N, Lee P, Coppens P, Subramania M A and Sleight A W 1988 Science 241 954
|
[33] |
Eibl O 1991 Physica C 175 419
|
[34] |
Heinrich H, Kostorz G, Heeb B and Gauckler L J 1994 Physica C 224 133
|
[35] |
Withers R L, Thompson J G, Wallenberg L R, Fitz Gerald J D, Anderson J S and Hyde B G 1988 J. Phys. C 21 6067
|
[36] |
Aebi P, Osterwalder J, Schwaller P, Schlapbach L, Shimoda M, Mochiku T and Kadowaki K 1994 Phys. Rev. Lett. 72 2757
|
[37] |
Osterwalder J, Aebi P, Schwaller P, Schlapbach L, Shimoda M, Mochiku T and Kadowaki K 1995 Appl. Phys. A 60 247
|
[38] |
Ding H, Bellman A F, Campuzano J C, Randeria M, Norman M R, Yokoya T, Takahashi T, KatayamaYoshida H, Mochiku T, Kadowaki K, Jennings G and Brivio G P 1996 Phys. Rev. Lett. 76 1533
|
[39] |
Fretwell H M, Kaminski A, Mesot J, Campuzano J C, Norman M R, Randeria M, Sato T, Gatt R, Takahashi T and Kadowaki K 2000 Phys. Rev. Lett. 84 4449
|
[40] |
Chong I, Hiroi Z, Izumi M, Shimoyama J, Nakayama Y, Kishio K, Terashima T, Bando Y and Takano M 1997 Science 276 770
|
[41] |
Fournier P, Kapitulnik A and Marshall A F 1996 Physica C 257 291
|
[42] |
Kendziora C, Qadri S B and Skelton E 1997 Phys. Rev. B 56 14717
|
[43] |
Schwaller P, Aebi P, Berger H, Beeli C, Osterwalder J and Schlapbach L 1995 J. Electron. Spectrosc. Relat. Phenom. 76 127
|
[44] |
Legner S, Borisenko S V, Durr C, Pichler T, Knupfer M, Golden M S, Fink J, Yang G, Abell S, Berger H, Muller R, Janowitz C and Reichardt G 2000 Phys. Rev. B 62 154
|
[45] |
Bogdanov P V, Lanzara A, Zhou X J, Kellar S A, Feng D L, Lu E D, Eisaki H, Shimoyama J I, Kishio K, Hussain Z and Shen Z X 2001 Phys. Rev. B 64 180505
|
[46] |
Takeuchi T, Kaga H, Okada Y, Ikuta H, Baba T, Tsuda S and Shin S 2007 J. Electron. Spectrosc. Relat. Phenom. 156 452
|
[47] |
Ziegler B, Muller B, Krapf A, Dwelk H, Janowitz C and Manzke R 2008 Phys. Rev. B 77 054520
|
[48] |
Liu S Y, Zhang W T, Zhao L, Liu H Y, Wu Y, Liu G D, Dong X L and Zhou X J 2012 Chin. Phys. Lett. 29 087401
|
[49] |
Zhang Y, Wang C L, Yu L, Liu G D, Liang A J, Huang J W, Nie S M, Sun X, Zhang Y X, Shen B, Liu J, Weng H M, Zhao L X, Chen G F, Jia X W, Hu C, Ding Y, Zhao W J, Gao Q, Li C, He S L, Zhao L, Zhang F F, Zhang S J, Yang F, Wang Z M, Peng Q J, Dai X, Fang Z, Xu Z Y, Chen C T and Zhou X J 2017 Nat. Commun. 8 15512
|
[50] |
Guo C, Tian H F, Yang H X, Zhang B, Sun K, Sun X, Peng Y Y, Zhou X J and Li J Q 2017 Phys. Rev. Mater. 1 064802
|
[51] |
Feng D L, Armitage N P, Lu D H, Damascelli A, Hu J P, Bogdanov P, Lanzara A, Ronning F, Shen K M, Eisaki H, Kim C, Shen Z X, Shimoyama J and Kishio K 2001 Phys. Rev. Lett. 86 5550
|
[52] |
Mans A, Santoso I, Huang Y, Siu W K, Tavaddod S, Arpiainen V, Lindroos M, Berger H, Strocov V N, Shi M, Patthey L and Golden M S 2006 Phys. Rev. Lett. 96 107007
|
[53] |
Bansil A and Lindroos M 1999 Phys. Rev. Lett. 83 5154
|
[54] |
Zandbergen H W, Groen W A, Mijlhoff F C, Tendeloo G V and Amelinckx S 1988 Physica C 156 325
|
[55] |
Gai P L and Day P 1988 Physica C 152 335
|
[56] |
Zhang Y X, Hu C, Hu Y, Zhao L, Ding Y, Sun X, Liang A J, Zhang Y, He S L, Liu D F, Yu L, Liu G D, Dong X L, Gu G D, Chen C C, Xu Z Y and Zhou X J 2016 Sci. Bull. 61 1037
|
[57] |
Zhong Y G, Chen Y M, Guan J Y, Zhao J, Rao Z C, Tang C Y, Liu H J, Sun Y J and Ding H 2018 Sci. China-Phys. Mech. Astron. 61 127403
|
[58] |
Meng J Q, Liu G D, Zhang W T, Zhao L, Liu H Y, Lu W, Dong X L and Zhou X J 2009 Supercond. Sci. Technol. 22 045010
|
[59] |
Chen Z, Peng Y Y, Wang Z, Song Y J, Meng J Q, Zhou X J and Li J Q 2013 Supercond. Sci. Technol. 26 055010
|
[60] |
Chong I, Terashima T, Bando Y, Takano M, Matsuda Y, Nagaoka T and Kumagai K 1997 Physica C 290 57
|
[61] |
Mao Z Q, Fan C G, Shi L, Yao Z, Yang L, Wang Y and Zhang Y H 1993 Phys. Rev. B 47 14467
|
[62] |
Torardi C C, McCarron E M, Gai P L, Parise J B, Ghoroghchian J, Kang D B, Whangbo M H and Barry J C 1991 Physica C 176 347
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|