Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 107501    DOI: 10.1088/1674-1056/ab99ac
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetic characterization of a thin Co2MnSi/L10–MnGa synthetic antiferromagnetic bilayer prepared by MBE

Shan Li(黎姗)1,2, Jun Lu(鲁军)1,3,†, Si-Wei Mao(毛思玮)1,2, Da-Hai Wei(魏大海)1,2,3, and Jian-Hua Zhao(赵建华)1,2,3
1 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences (CAS), Beijing 100083, China
2 Center of Materials Science and Optoelectronics Engineering & CAS Center of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
3 Beijing Academy of Quantum Information Science, Beijing 100193, China
Abstract  

A synthetic antiferromagnet based on a thin antiferromagnetically coupled Co2MnSi/MnGa bilayer with Pt capping is proposed in this work. Square magnetic loops measured by anomalous Hall effect reveal that a well perpendicular magnetic anisotropy is obtained in this structure. A very large coercivity of 83 kOe (1 Oe = 79.5775 A⋅m−1) is observed near the magnetic moment compensation point of 270 K, indicating an antiferromagnetic behavior. Moreover, the anomalous Hall signal does not go to zero even at the magnetic compensation point, for which the difficulty in detecting the conventional antiferromagnets can be overcome. By changing the temperature, the polarity of the spin–orbit torque induced switching is changed around the bilayer compensation point. This kind of thin bilayer has potential applications in spin–orbit-related effects, spintronic devices, and racetrack memories.

Keywords:  exchange coupling      magnetization compensation      anomalous Hall effect      molecular-beam epitaxy  
Received:  14 February 2020      Revised:  26 May 2020      Accepted manuscript online:  05 June 2020
PACS:  75.30.Et (Exchange and superexchange interactions)  
  75.70.Ak (Magnetic properties of monolayers and thin films)  
  73.50.Jt (Galvanomagnetic and other magnetotransport effects)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
Corresponding Authors:  Corresponding author. E-mail: lujun@semi.ac.cn   
About author: 
†Corresponding author. E-mail: lujun@semi.ac.cn
* Project supported by the National Program on Key Basic Research Project, China (Grant No. 2018YFB0407601), the Key Research Project of Frontier Science of the Chinese Academy of Sciences (Grant Nos. QYZDY-SSW-JSC015 and XDPB12), and the National Natural Science Foundation of China (Grant Nos. 11874349 and 11774339).

Cite this article: 

Shan Li(黎姗), Jun Lu(鲁军)†, Si-Wei Mao(毛思玮), Da-Hai Wei(魏大海), and Jian-Hua Zhao(赵建华) Magnetic characterization of a thin Co2MnSi/L10–MnGa synthetic antiferromagnetic bilayer prepared by MBE 2020 Chin. Phys. B 29 107501

Fig. 1.  

(a) Schematic diagram of sample structure, (b) microscope photograph of Hall bar device (120 μm × 10 μm), (c) x-ray diffraction spectrum of the Co2MnSi (0.7 nm)/L10–MnGa (3 nm)/Pt (3 nm) structure, and (d) fitted peaks of Pt (002) and MnGa (002) of the Co2MnSi (0.7 nm)/L10–MnGa (3 nm)/Pt (3 nm) structure, with black, red, pink, and blue curves representing the experimental data, fitted sum of peaks, fitted Pt (002) peak, and fitted MnGa (002) peak, respectively.

Fig. 2.  

(a) RAH loop and (b) out-of-plane magnetic hysteresis loop at room temperature of sample R. (c) RAH loops of sample A at different temperatures. (d) Plots of temperature-dependent coercivity and out-of-plane remnant magnetization of sample A. (e) Plot of temperature-dependent out-of-plane remnant magnetization of sample A. (f) Remnant Hall resistance varying with temperature of sample A, showing opposite magnetic configurations in the process of temperature changing. (g) Schematic diagrams of the magnetic moment states at points A, B, C and D of (e) with “↑” and “↓” representing the magnetic moments parallel and antiparallel to the positive direction separately.

Fig. 3.  

RAH loop at (a) 280 K and (b) 240 K and SOT-induced switching loop at (c) 280 K and (d) 240 K, of sample B (Co2MnSi (0.7 nm)/L10–MnGa (3 nm)/Pt (5 nm)).

[1]
Ackermann M S, Emori S 2018 J. Appl. Phys. 124 223901 DOI: 10.1063/1.5052156
[2]
Chen R Y, Zhang R Q, Liao L Y, Chen X Z, Zhou Y J, Gu Y D, Saleem M S, Zhou X F, Pan F, Song C 2019 Appl. Phys. Lett. 115 132403 DOI: 10.1063/1.5118928
[3]
Fernandez-Pacheco A, Vedmedenko E, Ummelen F, Mansell R, Petit D, Cowburn R P 2019 Nat. Mater. 18 679 DOI: 10.1038/s41563-019-0386-4
[4]
Han D S, Lee K, Hanke J P, Mokrousov Y, Kim K W, Yoo W, van Hees Y L W, Kim T W, Lavrijsen R, You C Y, Swagten H J M, Jung M H, Klaui M 2019 Nat. Mater. 18 703 DOI: 10.1038/s41563-019-0370-z
[5]
Li Y, Jin X, Pan P, Tan F N, Lew W S, Ma F 2018 Chin. Phys. B 27 127502 DOI: 10.1088/1674-1056/27/12/127502
[6]
Duine R A, Lee K J, Parkin S S P, Stiles M D 2018 Nat. Phys. 14 217 DOI: 10.1038/s41567-018-0050-y
[7]
Shi G Y, Wan C H, Chang Y S, Li F, Zhou X J, Zhang P X, Cai J W, Han X F, Pan F, Song C 2017 Phys. Rev. B 95 104435 DOI: 10.1103/PhysRevB.95.104435
[8]
Moriyama T, Zhou W, Seki T, Takanashi K, Ono T 2018 Phys. Rev. Lett. 121 167202 DOI: 10.1103/PhysRevLett.121.167202
[9]
Bi C, Almasi H, Price K, Newhouse-Illige T, Xu M, Allen S R, Fan X, Wang W 2017 Phys. Rev. B 95 104434 DOI: 10.1103/PhysRevB.95.104434
[10]
Zhang P X, Liao L Y, Shi G Y, Zhang R Q, Wu H Q, Wang Y Y, Pan F, Song C 2018 Phys. Rev. B 97 214403 DOI: 10.1103/PhysRevB.97.214403
[11]
Yang S H, Ryu K S, Parkin S 2015 Nat. Nanotechnol. 10 221 DOI: 10.1038/nnano.2014.324
[12]
Barker J, Tretiakov O A 2016 Phys. Rev. Lett. 116 147203 DOI: 10.1103/PhysRevLett.116.147203
[13]
Jin C, Song C, Wang J, Liu Q 2016 Appl. Phys. Lett. 109 182404 DOI: 10.1063/1.4967006
[14]
Lee J C T, Chess J J, Montoya S A, Shi X, Tamura N, Mishra S K, Fischer P, McMorran B J, Sinha S K, Fullerton E E, Kevan S D, Roy S 2016 Appl. Phys. Lett. 109 022402 DOI: 10.1063/1.4955462
[15]
Zhang X, Zhou Y, Ezawa M 2016 Sci. Rep. 6 24795 DOI: 10.1038/srep24795
[16]
Zhang X, Zhou Y, Ezawa M 2016 Nat. Commun. 7 10293 DOI: 10.1038/ncomms10293
[17]
Kim S K, Lee K J, Tserkovnyak Y 2017 Phys. Rev. B 95 140404(R) DOI: 10.1103/PhysRevB.95.140404
[18]
Xia H, Jin C, Song C, Wang J, Wang J, Liu Q 2017 J. Phys. D: Appl. Phys. 50 505005 DOI: 10.1088/1361-6463/aa95f2
[19]
Akosa C A, Tretiakov O A, Tatara G, Manchon A 2018 Phys. Rev. Lett. 121 097204 DOI: 10.1103/PhysRevLett.121.097204
[20]
Caretta L, Mann M, Buttner F, Ueda K, Pfau B, Gunther C M, Hessing P, Churikova A, Klose C, Schneider M, Engel D, Marcus C, Bono D, Bagschik K, Eisebitt S, Beach G S D 2018 Nat. Nanotechnol. 13 1154 DOI: 10.1038/s41565-018-0255-3
[21]
Xing L, Hua D, Wang W 2018 J. Appl. Phys. 124 123904 DOI: 10.1063/1.5042794
[22]
Hirata Y, Kim D H, Kim S K, Lee D K, Oh S H, Kim D Y, Nishimura T, Okuno T, Futakawa Y, Yoshikawa H, Tsukamoto A, Tserkovnyak Y, Shiota Y, Moriyama T, Choe S B, Lee K J, Ono T 2019 Nat. Nanotechnol. 14 232 DOI: 10.1038/s41565-018-0345-2
[23]
Khoshlahni R, Qaiumzadeh A, Bergman A, Brataas A 2019 Phys. Rev. B 99 054423 DOI: 10.1103/PhysRevB.99.054423
[24]
Fache T, Tarazona H S, Liu J, L’vova G, Applegate M J, Rojas-Sanchez J C, Petit-Watelot S, Landauro C V, Quispe-Marcatoma J, Morgunov R, Barnes C H W, Mangin S 2018 Phys. Rev. B 98 064410 DOI: 10.1103/PhysRevB.98.064410
[25]
Ranjbar R, Suzuki K Z, Sugihara A, Ando Y, Miyazaki T, Mizukami S 2017 J. Magn. Magn. Mater. 433 195 DOI: 10.1016/j.jmmm.2017.03.018
[26]
Ranjbar R, Suzuki K, Sugihara A, Miyazaki T, Ando Y, Mizukami S 2015 Materials (Basel) 8 6531 DOI: 10.3390/ma8095320
[27]
Ma Q L, Mizukami S, Kubota T, Zhang X M, Ando Y, Miyazaki T 2014 Phys. Rev. Lett. 112 157202 DOI: 10.1103/PhysRevLett.112.157202
[28]
Mao S W, Lu J, Zhao X P, Wang X L, Wei D H, Liu J, Xia J B, Zhao J H 2017 Sci. Rep. 7 43064 DOI: 10.1038/srep43064
[29]
Lu J, Mao S W, Zhao X P, Wang X L, Liu J, Xia J B, Xiong P, Zhao J H 2017 Sci. Rep. 7 16990 DOI: 10.1038/s41598-017-16761-z
[30]
Li S, Lu J, Wen L J, Pan D, Wang H L, Wei D H, Zhao J H 2020 Chin. Phys. Lett. 37 077303 DOI: 10.1088/0256-307X/37/7/077303
[31]
Zhu L J, Pan D, Zhao J H 2014 Phys. Rev. B 89 220406(R) DOI: 10.1103/PhysRevB.89.220406
[32]
Zhu L J, Pan D, Nie S H, Lu J, Zhao J H 2013 Appl. Phys. Lett. 102 132403 DOI: 10.1063/1.4799344
[33]
Matsuno J, Ogawa N, Yasuda K, Kagawa F, Koshibae W, Nagaosa N, Tokura Y, Kawasaki M 2016 Sci. Adv. 2 e1600304 DOI: 10.1126/sciadv.1600304
[34]
Kan D, Moriyama T, Kobayashi K, Shimakawa Y 2018 Phys. Rev. B 98 18048(R) http://dx.doi.org/
[35]
Ludbrook B M, Dubuis G, Puichaud A H, Ruck B J, Granville S 2017 Sci. Rep. 7 13620 DOI: 10.1038/s41598-017-13211-8
[36]
Finley J, Liu L 2016 Phys. Rev. Appl. 6 054001 DOI: 10.1103/PhysRevApplied.6.054001
[37]
Siddiqui S A, Han J, Finley J T, Ross C A, Liu L 2018 Phys. Rev. Lett. 121 057701 DOI: 10.1103/PhysRevLett.121.057701
[38]
Wang W H, Ren X B, Wu G H, Przybylski M, Barthel J, Kirschner J 2005 IEEE Trans. Magn. 41 2805 DOI: 10.1109/TMAG.2005.854833
[39]
Wang W H, Ren X B, Wu G H, Przybylski M, Barthel J, Kirschner J 2017 Phys. Rev. Lett. 118 167201 DOI: 10.1103/PhysRevLett.118.167201
[40]
Mishra R, Yu J, Qiu X, Motapothula M, Venkatesan T, Yang H 2017 Phys. Rev. Lett. 118 167201 DOI: 10.1103/PhysRevLett.118.167201
[1] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[2] Current carrying states in the disordered quantum anomalous Hall effect
Yi-Ming Dai(戴镒明), Si-Si Wang(王思思), Yan Yu(禹言), Ji-Huan Guan(关济寰), Hui-Hui Wang(王慧慧), and Yan-Yang Zhang(张艳阳). Chin. Phys. B, 2022, 31(9): 097302.
[3] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[4] Photon-interactions with perovskite oxides
Hongbao Yao(姚洪宝), Er-Jia Guo(郭尔佳), Chen Ge(葛琛), Can Wang(王灿), Guozhen Yang(杨国桢), and Kuijuan Jin(金奎娟). Chin. Phys. B, 2022, 31(8): 088106.
[5] Ru thickness-dependent interlayer coupling and ultrahigh FMR frequency in FeCoB/Ru/FeCoB sandwich trilayers
Le Wang(王乐), Zhao-Xuan Jing(荆照轩), Ao-Ran Zhou(周傲然), and Shan-Dong Li(李山东). Chin. Phys. B, 2022, 31(8): 086201.
[6] Anomalous Hall effect of facing-target sputtered ferrimagnetic Mn4N epitaxial films with perpendicular magnetic anisotropy
Zeyu Zhang(张泽宇), Qiang Zhang(张强), and Wenbo Mi(米文博). Chin. Phys. B, 2022, 31(4): 047305.
[7] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[8] Prediction of quantum anomalous Hall effect in CrI3/ScCl2 bilayer heterostructure
Yuan Gao(高源), Huiping Li(李慧平), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(10): 107304.
[9] Pressure tuning of the anomalous Hall effect in the kagome superconductor CsV3Sb5
Fang-Hang Yu(喻芳航), Xi-Kai Wen(温茜凯), Zhi-Gang Gui(桂智刚), Tao Wu(吴涛), Zhenyu Wang(王震宇), Zi-Ji Xiang(项子霁), Jianjun Ying(应剑俊), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2022, 31(1): 017405.
[10] Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer
Zi-Bo Zhang(张子博) and Yong Hu(胡勇). Chin. Phys. B, 2021, 30(7): 077503.
[11] Anomalous Hall effect in ferromagnetic Weyl semimetal candidate Zr1-xVxCo1.6Sn
Guangqiang Wang(王光强), Zhanghao Sun(孙彰昊), Xinyu Si(司鑫宇), Shuang Jia(贾爽). Chin. Phys. B, 2020, 29(7): 077503.
[12] Surface states modulated exchange interaction in Bi2Se3/thulium iron garnet heterostructures
Hai-Bin Shi(石海滨), Li-Qin Yan(闫丽琴), Yang-Tao Su(苏仰涛), Li Wang(王力), Xin-Yu Cao(曹昕宇), Lin-Zhu Bi(毕林竹), Yang Meng(孟洋), Yang Sun(孙阳), and Hong-Wu Zhao(赵宏武). Chin. Phys. B, 2020, 29(11): 117302.
[13] Quantum anomalous Hall effect in twisted bilayer graphene quasicrystal
Zedong Li(李泽东) and Z F Wang(王征飞)†. Chin. Phys. B, 2020, 29(10): 107101.
[14] Temperature-dependent interlayer exchange coupling strength in synthetic antiferromagnetic[Pt/Co]2/Ru/[Co/Pt]4 multilayers
Yong Li(李勇), Xiangjun Jin(金香君), Pengfei Pan(潘鹏飞), Fu Nan Tan, Wen Siang Lew, Fusheng Ma(马付胜). Chin. Phys. B, 2018, 27(12): 127502.
[15] Anisotropic nanocomposite soft/hard multilayer magnets
Wei Liu(刘伟), Zhidong Zhang(张志东). Chin. Phys. B, 2017, 26(11): 117502.
No Suggested Reading articles found!