Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 104206    DOI: 10.1088/1674-1056/abab76
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

An improved method for the investigation of high-order harmonic generation from graphene

Zhong Guan(管仲)1, Lu Liu(刘璐)2, Guo-Li Wang(王国利)1,†, Song-Feng Zhao(赵松峰)1, Zhi-Hong Jiao(焦志宏)1, and Xiao-Xin Zhou(周效信)1,
1 College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
2 Department of Physics, College of Science, National University of Defense Technology, Changsha 410073, China
Abstract  

High-order harmonic generation (HHG) of bulk crystals in strong laser field is typically investigated with semiconductor Bloch equations (SBEs). However, in the length gauge, it suffers from the divergence for the crystals with a zero band gap, such as graphene, using both Bloch- and Houston-states expansion methods. Here, we present a method of solving the SBEs based on time-dependent Bloch basis, which is equivalent to semiconductor Bloch equations in the velocity gauge. Using this method, we investigate the HHG of a single-layer graphene. It is found that our results for population are in good agreement with the other results. For a initial condition py = 0, we find the electrons just move in single valence band or conduction band, which are in accord with classical results. Our simulations on the HHG dependence of polarization of driving laser pulse confirm that 5th, 7th, and 9th harmonic yields increase to the maximal value when laser ellipticity ε ≈ 0.3. What is more, similar to the case of atoms in the laser field, the total strength of 3rd harmonic decrease monotonically with the increase of ε. In addition, we simulate the dependence of HHG on crystallographic orientation with respect to the polarization direction of linear mid-infrared laser pulse, and the results reveal that for higher harmonics, their radiation along with the change of rotation angle θ reflects exactly the sixfold symmetry of graphene. Our method can be further used to investigate the behaviors of other materials having Dirac points (i.e., surface states of topological insulators) in the strong laser fields.

Keywords:  high-order harmonic generation      graphene      velocity gauge      divergence  
Received:  26 April 2020      Revised:  15 June 2020      Accepted manuscript online:  01 August 2020
PACS:  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  72.20.Ht (High-field and nonlinear effects)  
Corresponding Authors:  Corresponding author. E-mail: wanggl@nwnu.edu.cn Corresponding author. E-mail: zhouxx@nwnu.edu.cn   
About author: 
†Corresponding author. E-mail: wanggl@nwnu.edu.cn
‡Corresponding author. E-mail: zhouxx@nwnu.edu.cn
* Project supported by the National Natural Science Foundation of China (Grant Nos. 11764038, 11864037, 11765018, and 11664035) and the Science Foundation of Northwest Normal University, China (Grant No. NWNU-LKQN-17-1).

Cite this article: 

Zhong Guan(管仲), Lu Liu(刘璐), Guo-Li Wang(王国利)†, Song-Feng Zhao(赵松峰), Zhi-Hong Jiao(焦志宏), and Xiao-Xin Zhou(周效信)‡ An improved method for the investigation of high-order harmonic generation from graphene 2020 Chin. Phys. B 29 104206

Fig. 1.  

The first Brillouin zone in graphene.

Fig. 2.  

Comparison of our calculated conduction band population ρcc(k,t) in the velocity gauge (right column) with those from the two-band model (left column) given in Ref. [58] for panels (a) and (b) F0 = 0.8 V/Å and panels (c) and (d) F0 = 2.25 V/Å.

Fig. 3.  

The same as Fig. 2, but for panels (a) and (b) t = 0.75 fs and panels (c) and (d) t = 2.25 fs with the same F0 = 1.0 V/Å.

Fig. 4.  

Comparison of the temporal evolution of the normalized single-electron current calculated by our method and those from TDDE for (a) py = 0, (b) py = 0.02A0, and (c) py = 0.05A0. In all the cases px/eA0 = −0.75. In Fig. 4(a) we also show the result with Houston basis.

Fig. 5.  

Left column: the vector potential of laser pulse and electron current; Right column: the time evolution of the wave packet (red and black lines are classical trajectories).

Fig. 6.  

Comparison of harmonic spectra of graphene generated by laser fields with different ellipticity.

Fig. 7.  

The dependence of intensity in two perpendicular directions (x and y) of harmonics 3rd, 5th, 7th, and 9th on the ellipticity of driving laser pulse.

Fig. 8.  

(a) Harmonic radiation with different rotation angle θ. (b) The interband polarization dcv (k) as a function of the crystal momentum k. (c) and (d) Harmonic spectra generated from inter-band polarization and intra-band current for θ of 0° and 20°, respectively.

[1]
Xia C L, Lan Y Y, Li Q Q, Miao X Y 2019 Chin. Phys. B 28 103203 DOI: 10.1088/1674-1056/ab4278
[2]
Zhang H D, Guo J, Shi Y, Du H, Liu H F, Huang X R, Liu X S, Jun Jing 2017 Chin. Phys. Lett. 34 014206 DOI: 10.1088/0256-307X/34/1/014206
[3]
Pan Y, Guo F M, Yang Y J, Ding D J 2019 Chin. Phys. B 28 113201 DOI: 10.1088/1674-1056/ab47f8
[4]
Guo C X, Jiao Z H, Zhou X X, Li P C 2020 Acta Phys. Sin. 69 074203 in Chinese DOI: 10.7498/aps.69.20191883
[5]
Popmintchev T, Chen M C, Popmintchev D, Arpin P, Brown S, Ališauskas S, Andriukaitis G, Balčiunas T, Mücke Q D, Pugzlys A, Baltuška A, Shim B, Schrauth S E, Gaeta A, Hernández-García C, Plaga L, Becker A, Jaron-Becker A, Murnane M M, Kapteyn H C 2012 Science 336 1287 DOI: 10.1126/science.1218497
[6]
He L X, Lan P F, Le A T, Wang B N, Wang B C, Zhu X S, Lu P X, Lin C D 2018 Phys. Rev. Lett. 121 163201 DOI: 10.1103/PhysRevLett.121.163201
[7]
Shiner A D, Schmidt B E, Trallero-Herrero C, Wörner H J, Patchkovskii S, Corkum P B, Kieffer J C, Légaré F, Villeneuve D M 2001 Nat. Phys. 7 464
[8]
Wang G L, Jin C, Le A T, Lin C D 2012 Phys. Rev. A 86 015401 DOI: 10.1103/PhysRevA.86.015401
[9]
Wörner H J, Bertrand J B, Fabre B, Higuet J, Ruf H, Dubrouil A, Patchkovskii S, Spanner M, Mairesse Y, Blanchet V, Mevel E, Constant E, Corkum P B, Villeneuve D M 2011 Science 334 208 DOI: 10.1126/science.1208664
[10]
Itatani J, Levesque J, Zeidler D, Niikura H, Pepin H, Kieffer J, Corkum P B, Villeneuve D 2004 Nature 432 867 DOI: 10.1038/nature03183
[11]
Baker S, Robinson J, Haworth C, Teng H, Smith R, Chirila C, Lein M, Tisch J, Marangos J 2006 Science 312 424 DOI: 10.1126/science.1123904
[12]
Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D, Corkum P B, Ivanov M Y 2009 Nature 460 972 DOI: 10.1038/nature08253
[13]
Vodungbo B, Sardinha A B, Gautier J, Lambert G, Lozano M, Sebban S, Meltchakov E, Delmotte 2011 Europhys. Lett. 94 54003 DOI: 10.1209/0295-5075/94/54003
[14]
Corkum P B, Krausz F 2007 Nat. Phys. 3 381 DOI: 10.1038/nphys620
[15]
Hentschel M, Kienberger R, Spielmann C, Reider G, Milosevic N, Brabec T, Corkum P B, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509 DOI: 10.1038/35107000
[16]
Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163 DOI: 10.1103/RevModPhys.81.163
[17]
Song H, Lü X Y, Zhu R B, Chen G 2019 Acta Phys. Sin. 68 184201 in Chinese DOI: 10.7498/aps.68.20190392
[18]
Xia C L, Miao X Y 2015 Chin. Phys. Lett. 32 043202 DOI: 10.1088/0256-307X/32/4/043202
[19]
Lü X Y, Zhu R B, Song H, Su N, Chen G 2019 Acta Phys. Sin. 68 214201 in Chinese DOI: 10.7498/aps.68.20190847
[20]
Corkum P B 1993 Phys. Rev. Lett. 71 1994 DOI: 10.1103/PhysRevLett.71.1994
[21]
Dou G, Yu Y, Guo M, Zhang Y M, Sun Z, Li Y X 2017 Chin. Phys. Lett. 34 038502 DOI: 10.1088/0256-307X/34/3/038502
[22]
Huang J J, Su L, Pu S Z, Sun S A, Zhang L Y 2016 Chin. Phys. Lett. 33 104204 DOI: 10.1088/0256-307X/33/10/104204
[23]
Kang B, Hwang S T 2016 Chin. Phys. Lett. 33 057201 DOI: 10.1088/0256-307X/33/5/057201
[24]
Wang L K, Duan F L 2019 Acta Phys. Sin. 68 193101 DOI: 10.7498/aps.68.20190995
[25]
Liao T J, Lin B H, Wang Y H 2019 Acta Phys. Sin. 68 187901 in Chinese DOI: 10.7498/aps.68.20190882
[26]
Wang T H, Li A, Han B 2019 Acta Phys. Sin. 68 187102 in Chinese DOI: 10.7498/aps.68.20190859
[27]
Xu F, Zhang L 2019 Chin. Phys. B 28 117403 DOI: 10.1088/1674-1056/ab478c
[28]
Hu R X, Ma X L, An C H, Liu J 2019 Chin. Phys. B 28 117802 DOI: 10.1088/1674-1056/ab4576
[29]
Ghimire S, DiChiara A D, Sistrunk E, Ndabashimiye G, Szafruga U B, Mohammad A, Agostini P, DiMauro L F, Reis D A 2012 Phys. Rev. A 85 043836 DOI: 10.1103/PhysRevA.85.043836
[30]
Vampa G, McDonald C R, Orlando G, Klug D D, Corkum P B, Brabec T 2014 Phys. Rev. Lett. 113 073901 DOI: 10.1103/PhysRevLett.113.073901
[31]
Wu M, Browne D A, Schafer K J, Gaarde M B 2016 Phys. Rev. A 94 063403 DOI: 10.1103/PhysRevA.94.063403
[32]
Wu M, Ghimire S, Reis D A, Schafer K J, Gaarde M B 2015 Phys. Rev. A 94 043839 DOI: 10.1103/PhysRevA.94.043839
[33]
Ghimire S, Reis D A 2019 Nature 15 10 DOI: 10.1038/s41567-018-0315-5
[34]
McDonald C R, Vampa G, Corkum P B, Brabec T 2015 Phys. Rev. A 92 033845 DOI: 10.1103/PhysRevA.92.033845
[35]
Vampa G, McDonald C R, Orlando G, Corkum P B, Brabec T 2015 Phys. Rev. B 91 064302 DOI: 10.1103/PhysRevB.91.064302
[36]
Tamaya T, Ishikawa A, Ogawa T, Tanaka K 2016 Phys. Rev. Lett. 116 016601 DOI: 10.1103/PhysRevLett.116.016601
[37]
Ikemachi T, Shinohara Y, Sato T, Yumoto J, Kuwata-Gonokami M, Ishikawa K L 2017 Phys. Rev. A 95 043416 DOI: 10.1103/PhysRevA.95.043416
[38]
McDonald C R, Vampa G, Corkum P B, Brabec T 2017 Phys. Rev. Lett. 118 173601 DOI: 10.1103/PhysRevLett.118.173601
[39]
Vampa G, Hammond T G, Thiré N, Schmidt B E, Légaré F, McDonald C R, Brabec T, Klug D D, Corkum P B 2015 Phys. Rev. Lett. 115 193603 DOI: 10.1103/PhysRevLett.115.193603
[40]
Vampa G, McDonald C R, Orlando G, Klug D D, Corkum P B, Brabec T 2014 Phys. Rev. Lett. 113 073901 DOI: 10.1103/PhysRevLett.113.073901
[41]
Guan Z, Zhou X X, Bian X B 2016 Phys. Rev. A 93 033852 DOI: 10.1103/PhysRevA.93.033852
[42]
Jin J Z, Xiao X R, Liang H, Wang M X, Chen S G, Gong Q, Peng L Y 2018 Phys. Rev. A 97 043420 DOI: 10.1103/PhysRevA.97.043420
[43]
Tancogne D N, Mücke O D, K?rtner F X, Rubio A 2017 Phys. Rev. Lett. 118 087403 DOI: 10.1103/PhysRevLett.118.087403
[44]
Luu T T, Garg M, Kruchinin S Y, Moulet A, Hassan M T, Goulielmakis E 2015 Nature 521 498 DOI: 10.1038/nature14456
[45]
Ndabashimiye G, Ghimire S, Wu M, Browne D A, Schafer K J, Gaarde M B, Reis D A 2017 Nat. Phys. 13 345 DOI: 10.1038/nphys3955
[46]
Sivis M, Taucer M, Vampa G, Johnston K, Staudte A, Naumov A Y, Villeneuve D M, Ropers C, Corkum P B 2017 Science 357 330
[47]
Tancogne D N, Mücke O D, Kärtner F X, Rubio A 2017 Nat. Commun. 8 745 DOI: 10.1038/s41467-017-00764-5
[48]
Taucer M, Hammond T J, Corkum P B, Vampa G, Couture C, Thiré N, Schmidt B E, Légaré F, Selvi H, Unsuree N, Hamilton B, Echtermeyer T J, Denecke M A 2017 Phys. Rev. B 96 195420 DOI: 10.1103/PhysRevB.96.195420
[49]
Yang J L, Yuan Q C, Chen R F, Fang H L, Xiao F J, Li J T, Jiang B Q, Zhao J L, Gan X T 2019 Acta Phys. Sin. 68 214207 in Chinese DOI: 10.7498/aps.68.20190789
[50]
Liu L, Zhao J, Yuan J M, Zhao Z X 2019 Chin. Phys. B 28 114205 DOI: 10.1088/1674-1056/ab47f7
[51]
Li L, Lan P F, Zhu X S, Huang T F, Zhang Q B, Lein M, Lu P X 2019 Phys. Rev. Lett. 122 193901 DOI: 10.1103/PhysRevLett.122.193901
[52]
Zeng A W, Bian X B 2020 Phys. Rev. Lett. 124 203901 DOI: 10.1103/PhysRevLett.124.203901
[53]
Wang X Q, Xu Y, Huang X H, Bian X B 2018 Phys. Rev. A 98 023427 DOI: 10.1103/PhysRevA.98.023427
[54]
Jiang S C, Chen J G, Wei H, Yu C, Lu R F, Lin C D 2018 Phys. Rev. Lett. 120 253201 DOI: 10.1103/PhysRevLett.120.253201
[55]
Jiang S C, Wei H, Chen J G, Yu C, Lu R F, Lin C D 2017 Phys. Rev. A 96 053850 DOI: 10.1103/PhysRevA.96.053850
[56]
Li J B, Zhang X, Fu S L, Feng Y K, Hu B T, Du H C 2019 Phys. Rev. A 100 043404 DOI: 10.1103/PhysRevA.100.043404
[57]
Wang H Q, Feng Y K, Fu S L, Li J B, Zhang X, Du H C 2019 Phys. Rev. A 99 023406 DOI: 10.1103/PhysRevA.99.023406
[58]
Kelardeh H K, Apalkov V, Stockman M I 2015 Phys. Rev. B 91 045439 DOI: 10.1103/PhysRevB.91.045439
[59]
Liu C, Zheng Y, Zeng Z, Li R 2018 Phys. Rev. A 97 063412 DOI: 10.1103/PhysRevA.97.063412
[60]
Zurrón Ó, Picón A, Plaja L 2018 New J. Phys. 20 053033 DOI: 10.1088/1367-2630/aabec7
[61]
Zurrón Ó, Boyero-García R, Hernández-García C, Picón A, Plaja L 2019 Opt. Express 27 7776 DOI: 10.1364/OE.27.007776
[62]
Ishikawa K L 2010 Phys. Rev. B 82 201402 DOI: 10.1103/PhysRevB.82.201402
[63]
Wallace P R 1947 Phys. Rev. 71 622 DOI: 10.1103/PhysRev.71.622
[64]
Slonczewski J C, Weiss P R 1958 Phys. Rev. 109 272 DOI: 10.1103/PhysRev.109.272
[65]
Saito R, Dresselhaus G, Dresselhaus M 1999 Physical Properties of Carbon Nanotubes London Imperial College Press 17 29
[66]
Ishikawa K L 2013 New J. Phys 15 055021 DOI: 10.1088/1367-2630/15/5/055021
[67]
Higuchi T, Heide C, Ullmann K, Weber H B, Hommelhoff P 2017 Nature 550 224 DOI: 10.1038/nature23900
[68]
Dimitrovski D, Madsen L, Pedersen T 2017 Phys. Rev. B 95 035405 DOI: 10.1103/PhysRevB.95.035405
[69]
Naib I, Sipe J E, Dignam M M 2016 Phys. Rev. B 90 245423 DOI: 10.1103/PhysRevB.90.245423
[70]
Chizhova L A, Libisch F, Burgdörfe J 2016 Phys. Rev. B 94 075412 DOI: 10.1103/PhysRevB.94.075412
[71]
Yoshikawa N, Tamaya T, Tanaka K 2017 Science 356 736 DOI: 10.1126/science.aam8861
[72]
Budil K S, Salières P, L’Huillier A, Ditmire T, Perry M D 2003 Phys. Rev. A 48 R3437 DOI: 10.1103/PhysRevA.48.R3437
[73]
Schubert O, Hohenleutner M, Langer F, Urbanek B, Lange C, Huttner U, Golde D, Meier T, Kira M, Koch S W, Huber R 2014 Nat. Photon. 8 119 DOI: 10.1038/nphoton.2013.349
[74]
Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045 DOI: 10.1103/RevModPhys.82.3045
[75]
Chen L 2019 Chin. Phys. B 28 117304 DOI: 10.1088/1674-1056/ab478e
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[4] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[5] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[8] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[9] Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
Yanbo Chen(陈炎波), Baochang Li(李保昌), Xuhong Li(李胥红), Xiangyu Tang(唐翔宇), Chi Zhang(张弛), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(1): 014203.
[10] Probing subcycle spectral structures and dynamics of high-order harmonic generation in crystals
Long Lin(林龙), Tong-Gang Jia(贾铜钢), Zhi-Bin Wang(王志斌), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2022, 31(9): 093202.
[11] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[12] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[13] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[14] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[15] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
No Suggested Reading articles found!