Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 104207    DOI: 10.1088/1674-1056/ab9deb
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Role of quantum paths in generation of attosecond pulses

M R Sami and A Shahbaz†
1 Department of Physics, Government College University, P.O. Box 54000 Lahore, Pakistan
Abstract  

We investigate the role of core potential in high ionization potential systems on high harmonic generation (HHG) spectra and obtain attosecond pulses. In our scheme, we use a standard soft core potential to model high ionization potential systems and irradiated these systems with fixed laser parameters. We observe the role of these systems on all the three steps involved in HHG process including ionization, propagation and recombination. In our study, the results illustrate that for high ionization potential systems, the HHG process is more sensitive to the ionization probability compared to the recombination amplitude. We also observe that due to the stronger core potential, small oscillations of the electrons during the propagation do not contribute to the HHG spectrum, which implies the dominance of only long quantum paths in the HHG spectrum. Our results, for attosecond pulse generation, show that long quantum path electrons are responsible for the supercontinuum region near the cutoff, which is suitable for the extraction of a single attosecond pulse in this region.

Keywords:  high-order harmonic generation      attosecond pulses      quantum paths      strong nuclear potential  
Received:  13 March 2020      Revised:  03 May 2020      Accepted manuscript online:  18 June 2020
PACS:  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  02.60.Cb (Numerical simulation; solution of equations)  
Corresponding Authors:  Corresponding author. E-mail: atif-shahbaz@gcu.edu.pk   

Cite this article: 

M R Sami and A Shahbaz† Role of quantum paths in generation of attosecond pulses 2020 Chin. Phys. B 29 104207

Fig. 1.  

(a) Potential as a function of the distance from the nucleus and (b) the corresponding potential depths as a function of Ip.

Fig. 2.  

Calculated HHG spectra through numerical simulation of 1D-TDSE, considering potentials given in Fig. 1.

Fig. 3.  

(a) Recombination amplitudes for all potentials given in Fig. 1. (b) Calculated ionization probabilities corresponding to each system given in Fig. 1, when these are irradiated by an external electric field of fixed laser parameters.

Fig. 4.  

Electron wavefunction density for systems having (a) Ip = 2.0 a.u. and (b) Ip = 2.5 a.u.

Fig. 5.  

Time-frequency distribution of the HHG spectra when model potentials given in Fig. 1 are exposed to a single 5 fs/800 nm laser field with a peak intensity of 1.0 × 1015 W/cm2. Long and short quantum trajectories are calculated only for 1.5 cycles for a cosine-like pulse. These laser parameters are kept to be constant for each system, where (a) Ip = 2.0 a.u., (b) Ip = 2.1 a.u., (c) Ip = 2.2 a.u., (d) Ip = 2.3 a.u., (e) Ip = 2.4 a.u., (f) Ip = 2.5 a.u.

Fig. 6.  

(a) The temporal profile of the attosecond pulses by superposing harmonics from the 130th to 165th order for the system with Ip = 2.0 a.u. and (b) the temporal profile of the attosecond pulses by superposing harmonics from the 140th to 175th order for the system with Ip = 2.5 a.u.

[1]
Douhal A, Lahmani F, Zewail A H 1996 Chem. Phys. 207 477 DOI: 10.1016/0301-0104(96)00067-5
[2]
Zewail A H 2000 J. Phys. Chem. A 104 5660 DOI: 10.1021/jp001460h
[3]
Nass K, Gorel A, Abdullah M M et al. 2020 Nat. Commun. 11 1814 DOI: 10.1038/s41467-020-15610-4
[4]
Goulielmakis E, Loh Z H, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F, Stephen R L, Krausz F 2010 Nature 466 739 DOI: 10.1038/nature09212
[5]
Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A, Westerwalbesloh Th, Kleineberg U, Heinzmann U, Krausz F 2002 Nature 419 803 DOI: 10.1038/nature01143
[6]
Pal S K, Zewail A H 2004 Chem. Rev. 104 2099 DOI: 10.1021/cr020689l
[7]
Uiberacker M, Uphues Th, Schultze M, Verhoef A J, Yakovlev V, Kling M F, Rauschenberger J, Kabachnik N M, Schröder H, Lezius M, Kompa K L, Muller H G, Vrakking M J J, Hendel S, Kleineberg U, Heinzmann U, Drescher M, Krausz F 2007 Nature 446 627 DOI: 10.1038/nature05648
[8]
Calegari F, Trabattoni A, Palacios A, Ayuso D, Castrovilli M C, Greenwood J B, Decleva P, Martín F, Nisoli M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 142001 DOI: 10.1088/0953-4075/49/14/142001
[9]
Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F, Schultze M 2001 Nature 414 509 DOI: 10.1038/35107000
[10]
Krausz F, Stockman M I 2014 Nat. Photon. 8 205 DOI: 10.1038/nphoton.2014.28
[11]
Fabris D, Witting T, Okell W A, Walke D J, Matia-Hernando P, Henkel J, Barillot T R, Lein M, Marangos J P, Tisch J W G 2015 Nat. Photon. 9 383 DOI: 10.1038/nphoton.2015.77
[12]
McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B 4 595 DOI: 10.1364/JOSAB.4.000595
[13]
Li X F, L’Huillier A, Ferray M, Lompré L A, Mainfray G 1989 Phys. Rev. A 39 5751 DOI: 10.1103/PhysRevA.39.5751
[14]
Milosevic N, Scrinzi A, Brabec T 2002 Phys. Rev. Lett. 88 093905 DOI: 10.1103/PhysRevLett.88.093905
[15]
Agostini P, DiMauro L F 2004 Rep. Prog. Phys. 67 813 DOI: 10.1088/0034-4885/67/6/R01
[16]
Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163 DOI: 10.1103/RevModPhys.81.163
[17]
Balogh E, Kovacs K, Dombi P, Fulop J A, Farkas G, Hebling J, Tosa V, Varju K 2011 Phys. Rev. A 84 023806 DOI: 10.1103/PhysRevA.84.023806
[18]
Hansen K k, Bauer D, Madsen L B 2018 Phys. Rev. A 67 043424
[19]
Krause J L, Schafer K J, Kulander K C 1992 Phys. Rev. Lett. 68 3535 DOI: 10.1103/PhysRevLett.68.3535
[20]
Corkum P B 1993 Phys. Rev. Lett. 71 1994 DOI: 10.1103/PhysRevLett.71.1994
[21]
Pfeifer T, Gallmann L, Abel M J, Neumark D M, Leone S R 2006 Opt. Lett. 31 975 DOI: 10.1364/OL.31.000975
[22]
Feng X, Gilbertson S, Mashiko H, Wang H, Khan S D, Chini M, Wu Y, Zhao K, Chang Z 2009 Phys. Rev. Lett. 103 183901 DOI: 10.1103/PhysRevLett.103.183901
[23]
Feng L, Chu T 2011 Phys. Lett. A 375 3641 DOI: 10.1016/j.physleta.2011.08.039
[24]
Porat G, Heyl C M, Schoun S B, Benko C, Dörre N, Corwin K L, Ye J 2018 Nat. Photon. 12 387 DOI: 10.1038/s41566-018-0199-z
[25]
Zhai Z, Liu X 2008 J. Phys. B: At. Mol. Opt. Phys. 41 125602 DOI: 10.1088/0953-4075/41/12/125602
[26]
Peng Y, Zeng H 2008 Phys. Rev. A 78 033821 DOI: 10.1103/PhysRevA.78.033821
[27]
Häffner H, Beier T, Djekić S, Hermanspahn N, Kluge H J, Quint W, Stahl S, Verdú J, Valenzuela T, Werth G 2003 Eur. Phys. J. D 22 163 DOI: 10.1140/epjd/e2003-00012-2
[28]
Werth G, Alonso J, Beier T, Blaum K, Djekić S, Häffner H, Hermanspahn N, Quint W, Stahl S, Verdú J, Valenzuela T, Vogel M 2006 Int. J. Mass Spectrometry 251 152 DOI: 10.1016/j.ijms.2006.01.046
[29]
Kluge H J et al. 2008 Adv. Quantum Chem. 53 83
[30]
Kraft-Bermuth S, Andrianov V, Bleile A, Echler A, Egelhof P, Grabitz P, Kilbourne C, Kiselev O, McCammon D, Scholz P 2014 J. Low Temp. Phys. 176 1002 DOI: 10.1007/s10909-013-1002-7
[31]
Rudek B et al. 2013 Phys. Rev. A 87 023413 DOI: 10.1103/PhysRevA.87.023413
[32]
Young L, Kanter E, Krässig B et al. 2010 Nature 466 56 DOI: 10.1038/nature09177
[33]
Hoener M et al. 2010 Phys. Rev. Lett. 104 253002 DOI: 10.1103/PhysRevLett.104.253002
[34]
Abdullah M M, Anurag Jurek Z, Son S K, Santra R 2017 Phys. Rev. E 96 023205 DOI: 10.1103/PhysRevE.96.023205
[35]
Shahbaz A, Müller C, Staudt A, Bürvenich T J, Keitel C H 2007 Phys. Rev. Lett. 98 263901 DOI: 10.1103/PhysRevLett.98.263901
[36]
Shahbaz A, Bürvenich T J, Müller C 2010 Phys. Rev. A 82 013418 DOI: 10.1103/PhysRevA.82.013418
[37]
Gaarde M B, Schafer K J 2002 Phys. Rev. A 65 031406 DOI: 10.1103/PhysRevA.65.031406
[38]
Schafer K J, Gaarde M B, Heinrich A, Biegert J, Keller U 2004 Phys. Rev. Lett. 92 023003 DOI: 10.1103/PhysRevLett.92.023003
[39]
Zair A, Holler M, Guandalini A, Schapper F, Biegert J, Gallmann L, Keller U, Wyatt A, Monmayrant A, Walmsley I A, Cormier Auguste T, Caumes J P, Salieres P 2008 Phys. Rev. Lett. 100 143902 DOI: 10.1103/PhysRevLett.100.143902
[40]
Hu J, Han K L, He G Z 2005 Phys. Rev. Lett. 95 123001 DOI: 10.1103/PhysRevLett.95.123001
[41]
Lu R F, He H X, Guo Y H, Han K L 2009 J. Phys. B: At. Mol. Opt. Phys. 42 225601 DOI: 10.1088/0953-4075/42/22/225601
[42]
Zhang H, Han K L, Zhao Y, He G Z, Lou N Q 1997 Chem. Phys. letters 271 204 DOI: 10.1016/S0009-2614(97)00423-5
[43]
Eberly J H, Su Q, Javanainen J 1989 Phys. Rev. Lett. 62 881 DOI: 10.1103/PhysRevLett.62.881
[44]
Burnett K, Reed V C, Cooper J, Knight P L 1992 Phys. Rev. A 45 3347 DOI: 10.1103/PhysRevA.45.3347
[45]
Gordon A, Santra R, Kärtner F X 2005 Phys. Rev. A 72 063411 DOI: 10.1103/PhysRevA.72.063411
[46]
Feng L, Chu T 2012 J. Electron Spectrosc. Relat. Phenom. 185 39 DOI: 10.1016/j.elspec.2011.11.004
[1] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[2] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[3] Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
Yanbo Chen(陈炎波), Baochang Li(李保昌), Xuhong Li(李胥红), Xiangyu Tang(唐翔宇), Chi Zhang(张弛), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(1): 014203.
[4] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[5] Probing subcycle spectral structures and dynamics of high-order harmonic generation in crystals
Long Lin(林龙), Tong-Gang Jia(贾铜钢), Zhi-Bin Wang(王志斌), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2022, 31(9): 093202.
[6] Tunable spectral shift of high-order harmonic generation in atoms using a sinusoidally phase-modulated pulse
Yue Qiao(乔月), Jun Wang(王俊), Yan Yan(闫妍), Simeng Song(宋思蒙), Zhou Chen(陈洲), Aihua Liu(刘爱华), Jigen Chen(陈基根), Fuming Guo(郭福明), and Yujun Yang(杨玉军). Chin. Phys. B, 2022, 31(6): 064214.
[7] Enhancement of isolated attosecond pulse generation by using long gas medium
Yueying Liang(梁玥瑛), Xinkui He(贺新奎), Kun Zhao(赵昆), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2022, 31(4): 043302.
[8] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[9] Decoding the electron dynamics in high-order harmonic generation from asymmetric molecular ions in elliptically polarized laser fields
Cai-Ping Zhang(张彩萍) and Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2022, 31(4): 043301.
[10] Multiple collisions in crystal high-order harmonic generation
Dong Tang(唐栋) and Xue-Bin Bian(卞学滨). Chin. Phys. B, 2022, 31(12): 123202.
[11] Amplitude and rotation of the ellipticity of harmonicsfrom a linearly polarized laser field
Ping Li(李萍), Na Gao(高娜), Rui-Xian Yu(蔚瑞贤), Jun Wang(王俊), Su-Yu Li(李苏宇), Fu-Ming Guo(郭福明), and Yu-Jun Yang(杨玉军). Chin. Phys. B, 2022, 31(10): 103303.
[12] Generation of non-integer high-order harmonics and significant enhancement of harmonic intensity
Chang-Long Xia(夏昌龙), Yue-Yue Lan(兰悦跃), and Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2021, 30(4): 043202.
[13] Effects of initial electronic state on vortex patterns in counter-rotating circularly polarized attosecond pulses
Qi Zhen(甄琪), Jia-He Chen(陈佳贺), Si-Qi Zhang(张思琪), Zhi-Jie Yang(杨志杰), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2021, 30(2): 024203.
[14] Minimum structure of high-harmonic spectrafrom aligned O2 and N2 molecules
Bo Yan(闫博), Yi-Chen Wang(王一琛), Qing-Hua Gao(高庆华), Fang-Jing Cheng(程方晶), Qiu-Shuang Jing(景秋霜), Hong-Jing Liang(梁红静), and Ri Ma(马日). Chin. Phys. B, 2021, 30(11): 114213.
[15] Multiphoton quantum dynamics of many-electron atomic and molecular systems in intense laser fields
Peng-Cheng Li(李鹏程), Shih-I Chu. Chin. Phys. B, 2020, 29(8): 083202.
No Suggested Reading articles found!