Special Issue:
SPECIAL TOPIC —Terahertz physics
|
TOPICAL REVIEW—Terahertz physics |
Prev
Next
|
|
|
Active metasurfaces for manipulatable terahertz technology |
Jing-Yuan Wu(吴静远)1, Xiao-Feng Xu(徐晓峰)1, Lian-Fu Wei(韦联福)1,2 |
1 Photonics Laboratory and Institute of Functional Materials, College of Science, Donghua University, Shanghai 201620, China; 2 Information Quantum Technology Laboratory, School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031, China |
|
|
Abstract Metasurface is a kind of two-dimensional metamaterial with specially designed sub-wavelength unit cells. It consists of single-layer or few-layer stacks of planar structures and possesses certain superior abilities to manipulate the propagating electromagnetic waves, including the terahertz (THz) ones. Compared with the usual passive THz metasurfaces whose optical properties are difficult to be controlled after fabrication, the active materials are highly desirable to enable dynamic and tunable control of THz waves. In this review, we briefly summarize the progress of active THz metasurfaces, from their physical mechanisms on carrier concentration modulations, phase transitions, magneto-optical effects, etc., for various possible THz applications mainly with low-dimensional materials, vanadium dioxide films, and superconductors.
|
Received: 18 May 2020
Revised: 28 June 2020
Accepted manuscript online: 15 July 2020
|
PACS:
|
42.79.Hp
|
(Optical processors, correlators, and modulators)
|
|
41.20.Jb
|
(Electromagnetic wave propagation; radiowave propagation)
|
|
87.50.U-
|
|
|
64.70.Nd
|
(Structural transitions in nanoscale materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11974290) and the Fundamental Research Funds for the Central Universities, China (Grant No. 2232020D-44). |
Corresponding Authors:
Lian-Fu Wei
E-mail: lfwei@dhu.edu.cn
|
Cite this article:
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福) Active metasurfaces for manipulatable terahertz technology 2020 Chin. Phys. B 29 094202
|
[1] |
Tonouchi M 2007 Nat. Photon. 1 97
|
[2] |
Rahm M, Li J S and Padilla W J 2013 J. Infrared, Millimeter, Terahertz Waves 34 1
|
[3] |
Koenig S, Lopez-Diaz D, Antes J, Boes F, Henneberger R, Leuther A, Tessmann A, Schmogrow R, Hillerkuss D, Palmer R, Zwick T, Koos C, Freude W, Ambacher O, Leuthold J and Kallfass I 2013 Nat. Photon. 7 977
|
[4] |
Wade C G, Šibali N, De Melo N R, Kondo J M, Adams C S and Weatherill K J 2017 Nat. Photon. 11 40
|
[5] |
Zhou T, Zhang R, Yao C, Fu Z L, Shao D X and Cao J C 2017 Chin. Phys. Lett. 34 084206
|
[6] |
Li A, Singh S and Sievenpiper D 2018 Nanophotonics 7 989
|
[7] |
He Q, Sun S and Zhou L 2019 Research 2019 1849272
|
[8] |
Glybovski S B, Tretyakov S A, Belov P A, Kivshar Y S and Simovski C R 2016 Phys. Rep. 634 1
|
[9] |
Su D, Zhang X Y, Ma Y L, Shan F, Wu J Y, Fu X C, Zhang L J, Yuan K Q and Zhang T 2018 IEEE Photon. J. 10 4600109
|
[10] |
Zhang X, Tian Z, Yue W, Gu J, Zhang S, Han J and Zhang W 2013 Adv. Mater. 25 4567
|
[11] |
Yu N and Capasso F 2014 Nat. Mater. 13 139
|
[12] |
Sun L, Zhou Z, Zhong J, Shi Z, Mao Y, Li H, Cao J and Tao T H 2020 Small 16 2000294
|
[13] |
Li J, Yang Y, Li J, Zhang Y, Zhang Z, Zhao H, Li F, Tang T, Dai H and Yao J 2020 Adv. Theory Simulations 3 1900183
|
[14] |
Seo M A, Park H R, Koo S M, Park D J, Kang J H, Suwal O K, Choi S S, Planken P C M, Park G S, Park N K, Park Q H and Kim D S 2009 Nat. Photon. 3 152
|
[15] |
Luk'Yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H and Chong C T 2010 Nat. Mater. 9 707
|
[16] |
Tao H, Strikwerda A C, Fan K, Padilla W J, Zhang X and Averitt R D 2009 Phys. Rev. Lett. 103 147401
|
[17] |
Ou J Y, Plum E, Jiang L and Zheludev N I 2011 Nano Lett. 11 2142
|
[18] |
Fu Y H, Liu A Q, Zhu W M, Zhang X M, Tsai D P, Zhang J B, Mei T, Tao J F, Guo H C, Zhang X H, Teng J H, Zheludev N I, Lo G Q and Kwong D L 2011 Adv. Funct. Mater. 21 3589
|
[19] |
Cong L, Pitchappa P, Lee C and Singh R 2017 Adv. Mater. 29 1700733
|
[20] |
Khodasevych I E, Shah C M, Sriram S, Bhaskaran M, Withayachumnankul W, Ung B S Y, Lin H, Rowe W S T, Abbott D and Mitchell A 2012 Appl. Phys. Lett. 100 061101
|
[21] |
Ma F, Lin Y S, Zhang X and Lee C 2014 Light: Sci. Appl. 3 e171
|
[22] |
Shaltout A M, Shalaev V M and Brongersma M L 2019 Science 364 eaat3100
|
[23] |
Cui T, Bai B and Sun H B 2019 Adv. Funct. Mater. 29 1806692
|
[24] |
Wang L, Zhang Y, Guo X, Chen T, Liang H, Hao X, Hou X, Kou W, Zhao Y, Zhou T, Liang S and Yang Z 2019 Nanomaterials 9 965
|
[25] |
Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J and Averitt R D 2006 Nature 444 597
|
[26] |
Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D and Taylor A J 2009 Nat. Photon. 3 148
|
[27] |
Zhang Y, Qiao S, Liang S, Wu Z, Yang Z, Feng Z, Sun H, Zhou Y, Sun L, Chen Z, Zou X, Zhang B, Hu J, Li S, Chen Q, Li L, Xu G, Zhao Y and Liu S 2015 Nano Lett. 15 3501
|
[28] |
Shcherbakov M R, Liu S, Zubyuk V V., Vaskin A, Vabishchevich P P, Keeler G, Pertsch T, Dolgova T V., Staude I, Brener I and Fedyanin A A 2017 Nat. Commun. 8 17
|
[29] |
Du L L, Li Q, Li S X, Hu F R, Xiong X M, Li Y F, Zhang W T and Han J G 2016 Chin. Phys. B 25 027301
|
[30] |
Gopalan P and Sensale-Rodriguez B 2020 Adv. Opt. Mater. 8 1900550
|
[31] |
Zhao Y T, Wu B, Huang B J and Cheng Q 2017 Opt. Express 25 7161
|
[32] |
Shi S F, Zeng B, Han H L, Hong X, Tsai H Z, Jung H S and Zettl A 2015 Nano Lett. 15 372
|
[33] |
Seo M, Kyoung J, Park H, Koo S, Kim H S, Bernien H, Kim B J, Choe J H, Ahn Y H, Kim H T, Park N, Park Q H, Ahn K and Kim D S 2010 Nano Lett. 10 2064
|
[34] |
Zhao S, Hu F, Xu X, Jiang M, Zhang W, Yin S and Jiang W 2019 Chin. Phys. B 28 054203
|
[35] |
Zhu H F, Du L H, Li J, Shi Q W, Peng B, Li Z R, Huang W X and Zhu L G 2018 Appl. Phys. Lett. 112 081103
|
[36] |
Song Z, Wang K, Li J and Liu Q H 2018 Opt. Express 26 7148
|
[37] |
Parrott E P J, Han C, Yan F, Humbert G, Bessaudou A, Crunteanu A and Pickwell-MacPherson E 2016 Nanotechnology 27 205206
|
[38] |
Scalari G, Maissen C, Cibella S, Leoni R and Faist J 2014 Appl. Phys. Lett. 105 261104
|
[39] |
Keller J, Scalari G, Appugliese F, Mavrona E, Rajabali S, Süess M J, Beck M and Faist J 2018 ACS Photon. 5 3977
|
[40] |
Yu S, Wu X, Wang Y, Guo X and Tong L 2017 Adv. Mater. 29 1606128
|
[41] |
Alvear-Cabezón E, Smaali R, Centeno E, Gonzalez-Posada F and Taliercio T 2018 Phys. Rev. B 98 035305
|
[42] |
Fan Z F, Tan Z Y, Wan W J, Xin X, Lin X, Jin Z M, Cao J C and Ma G H 2017 Acta Phys. Sin. 66 087801 (in Chinese)
|
[43] |
Gu J, Singh R, Liu X, Zhang X, Ma Y, Zhang S, Maier S A, Tian Z, Azad A K, Chen H T, Taylor A J, Han J and Zhang W 2012 Nat. Commun. 3 1151
|
[44] |
Cai H, Huang Q, Hu X, Liu Y, Fu Z, Zhao Y, He H and Lu Y 2018 Adv. Opt. Mater. 6 1800143
|
[45] |
Kamaraju N, Rubano A, Jian L, Saha S, Venkatesan T, Nötzold J, Kramer Campen R, Wolf M and Kampfrath T 2014 Light: Sci. Appl. 3 e155
|
[46] |
Yang Y, Kamaraju N, Campione S, Liu S, Reno J L, Sinclair M B, Prasankumar R P and Brener I 2017 ACS Photon. 4 15
|
[47] |
Xiao S, Wang T, Liu T, Yan X, Li Z and Xu C 2018 Carbon 126 271
|
[48] |
Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K and Colombo L 2014 Nat. Nanotechnol. 9 768
|
[49] |
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
|
[50] |
Kuc A, Zibouche N and Heine T 2011 Phys. Rev. B 83 245213
|
[51] |
Wang Y, Kim J C, Wu R J, Martinez J, Song X, Yang J, Zhao F, Mkhoyan A, Jeong H Y and Chhowalla M 2019 Nature 568 70
|
[52] |
Ma X, Zhang R, An C, Wu S, Hu X and Liu J 2019 Chin. Phys. B 28 037803
|
[53] |
Schulman D S, Arnold A J and Das S 2018 Chem. Soc. Rev. 47 3037
|
[54] |
Allain A, Kang J, Banerjee K and Kis A 2015 Nat. Mater. 14 1195
|
[55] |
Novoselov K S, Geim A K, Morozov S V., Jiang D, Zhang Y, Dubonos S V., Grigorieva I V and Firsov A A 2004 Science 306 666
|
[56] |
Schwierz F 2012 Nat. Nanotechnol. 5 487
|
[57] |
Geim A K 2009 Science 324 1530
|
[58] |
Wang X and Gan X 2017 Chin. Phys. B 26 034203
|
[59] |
Neto A H C, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
|
[60] |
Wang F, Wang Z, Jiang C, Yin L, Cheng R, Zhan X, Xu K, Wang F, Zhang Y and He J 2017 Small 13 1604298
|
[61] |
Koppens F H L, Mueller T, Avouris P, Ferrari A C, Vitiello M S and Polini M 2014 Nat. Nanotechnol. 9 780
|
[62] |
Bao Q and Loh K P 2012 ACS Nano 6 3677
|
[63] |
Low T and Avouris P 2014 ACS Nano 8 1086
|
[64] |
De Abajo F J G 2014 ACS Photon. 1 135
|
[65] |
Jablan M, Buljan H and Soljačić M 2009 Phys. Rev. B 80 245435
|
[66] |
Koppens F H L, Chang D E and García De Abajo F J 2011 Nano Lett. 11 3370
|
[67] |
Wu J Y, Chun Y T, Li S, Zhang T, Wang J, Shrestha P K and Chu D 2018 Adv. Mater. 30 1705880
|
[68] |
Wu J Y, Chun Y T, Li S, Zhang T and Chu D 2018 ACS Appl. Mater. Interfaces 10 24613
|
[69] |
Lui C H, Frenzel A J, Pilon D V, Lee Y H, Ling X, Akselrod G M, Kong J and Gedik N 2014 Phys. Rev. Lett. 113 166801
|
[70] |
Docherty C J, Parkinson P, Joyce H J, Chiu M H, Chen C H, Lee M Y, Li L J, Herz L M and Johnston M B 2014 ACS Nano 8 11147
|
[71] |
Kar S, Su Y, Nair R R and Sood A K 2015 ACS Nano 9 12004
|
[72] |
Lee S H, Choi M, Kim T T, Lee S, Liu M, Yin X, Choi H K, Lee S S, Choi C G, Choi S Y, Zhang X and Min B 2012 Nat. Mater. 11 936
|
[73] |
Miao Z, Wu Q, Li X, He Q, Ding K, An Z, Zhang Y and Zhou L 2015 Phys. Rev. X 5 041027
|
[74] |
Zhao Y, Xiao X, Huo Y, Wang Y, Zhang T, Jiang K, Wang J, Fan S and Li Q 2017 ACS Appl. Mater. Interfaces 9 18945
|
[75] |
Kim T T, Soon Oh S, Kim H D, Sung Park H, Hess O, Min B and Zhang S 2017 Sci. Adv. 3 e1701377
|
[76] |
Kindness S J, Almond N W, Wei B, Wallis R, Michailow W, Kamboj V S, Braeuninger-Weimer P, Hofmann S, Beere H E, Ritchie D A and Degl'Innocenti R 2018 Adv. Opt. Mater. 6 1800570
|
[77] |
Yadav V S, Ghosh S K, Bhattacharyya S and Das S 2018 Appl. Opt. 57 8720
|
[78] |
Zhang M, Wang X X, Cao W Q, Yuan J and Cao M S 2019 Adv. Opt. Mater. 7 1900689
|
[79] |
Ryu S, Maultzsch J, Han M Y, Kim P and Brus L E 2011 ACS Nano 5 4123
|
[80] |
Liang X, Jung Y S, Wu S, Ismach A, Olynick D L, Cabrini S and Bokor J 2010 Nano Lett. 10 2454
|
[81] |
Li J, Sollami Delekta S, Zhang P, Yang S, Lohe M R, Zhuang X, Feng X and Östling M 2017 ACS Nano 11 8249
|
[82] |
Minemawari H, Yamada T, Matsui H, Tsutsumi J Y, Haas S, Chiba R, Kumai R and Hasegawa T 2011 Nature 475 364
|
[83] |
Yu K, Wang P, Lu G, Chen K H, Bo Z and Chen J 2011 J. Phys. Chem. Lett. 2 537
|
[84] |
Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Nature 457 706
|
[85] |
Camilli L, Jorgensen J H, Tersoff J, Stoot A C, Balog R, Cassidy A, Sadowski J T, Boggild P and Hornekær L 2017 Nat. Commun. 8 47
|
[86] |
Yatooshi T, Ishikawa A and Tsuruta K 2015 Appl. Phys. Lett. 107 053105
|
[87] |
Zhu X, Wang W, Yan W, Larsen M B, Boggild P, Pedersen T G, Xiao S, Zi J and Mortensen N A 2014 Nano Lett. 14 2907
|
[88] |
Thongrattanasiri S, Koppens F H L and García De Abajo F J 2012 Phys. Rev. Lett. 108 047401
|
[89] |
Fang Z, Wang Y, Schlather A E, Liu Z, Ajayan P M, García De Abajo F J, Nordlander P, Zhu X and Halas N J 2014 Nano Lett. 14 299
|
[90] |
Huidobro P A, Kraft M, Maier S A and Pendry J B 2016 ACS Nano 10 5499
|
[91] |
Jessop D S, Kindness S J, Xiao L, Braeuninger-Weimer P, Lin H, Ren Y, Ren C X, Hofmann S, Zeitler J A, Beere H E, Ritchie D A and Degl'Innocenti R 2016 Appl. Phys. Lett. 108 171101
|
[92] |
Majumdar A, Kim J, Vuckovic J and Wang F 2013 Nano Lett. 13 515
|
[93] |
Shan F, Zhang X Y, Wu J Y and Zhang T 2018 Chin. Phys. B 27 047804
|
[94] |
Liu P Q, Luxmoore I J, Mikhailov S A, Savostianova N A, Valmorra F, Faist J and Nash G R 2015 Nat. Commun. 6 8969
|
[95] |
Wu J Y, Zhang X Y, Ma X D, Qiu Y P and Zhang T 2015 RSC Adv. 5 95178
|
[96] |
Srivastava Y K, Chaturvedi A, Manjappa M, Kumar A, Dayal G, Kloc C and Singh R 2017 Adv. Opt. Mater. 5 1700762
|
[97] |
Hu Y, Jiang T, Zhou J, Hao H, Sun H, Ouyang H, Tong M, Tang Y, Li H, You J, Zheng X, Xu Z and Cheng X 2020 Nano Energy 68 104280
|
[98] |
Finlayson D M 1990 Philos. Mag. Lett. 61 293
|
[99] |
Adler D 1968 Rev. Mod. Phys. 40 714
|
[100] |
Morin F J 1959 Phys. Rev. Lett. 3 34
|
[101] |
He X, Xu T, Xu X, Zeng Y, Xu J, Sun L, Wang C, Xing H, Wu B, Lu A, Liu D, Chen X and Chu J 2014 Sci. Rep. 4 6544
|
[102] |
Guo D, Hu C, Yang Q, Hua H, Li W and Kong C 2014 Mater. Res. Bull. 53 102
|
[103] |
He X, Xu J, Xu X, Gu C, Chen F, Wu B, Wang C, Xing H, Chen X and Chu J 2015 Appl. Phys. Lett. 106 093106
|
[104] |
Jeong Y G, Bahk Y M and Kim D S 2020 Adv. Opt. Mater. 8 1900548
|
[105] |
Wu B H, Xu X F and Wang C R 2016 Opt. Lett. 41 5768
|
[106] |
Liu H, Lu J and Wang X R 2018 Nanotechnology 29 24002
|
[107] |
Liu M, Hwang H Y, Tao H, Strikwerda A C, Fan K, Keiser G R, Sternbach A J, West K G, Kittiwatanakul S, Lu J, Wolf S A, Omenetto F G, Zhang X, Nelson K A and Averitt R D 2012 Nature 487 345
|
[108] |
Thompson Z J, Stickel A, Jeong Y G, Han S, Son B H, Paul M J, Lee B, Mousavian A, Seo G, Kim H T, Lee Y S and Kim D S 2015 Nano Lett. 15 5893
|
[109] |
Gray A X, Hoffmann M C, Jeong J, et al., 2018 Phys. Rev. B 98 045104
|
[110] |
Liu K, Lee S, Yang S, Delaire O and Wu J 2018 Mater. Today 21 875
|
[111] |
Pitchappa P, Kumar A, Prakash S, Jani H, Venkatesan T and Singh R 2019 Adv. Mater. 31 1808157
|
[112] |
Li W W, Zhu J J, Xu X F, Jiang K, Hu Z G, Zhu M and Chu J H 2011 J. Appl. Phys. 110 013504
|
[113] |
Sang J, Wang P, Meng Y, Xu X, Sun J L, Wang Y, Hua Z, Zheng T, Liu Z, Wang C, Wu B and Chen X 2019 Jpn. J. Appl. Phys. 58 050917
|
[114] |
Meng Y, Sang J, Liu Z, Xu X, Tan Z, Wang C, Wu B, Wang C, Cao J and Chen X 2019 Appl. Surf. Sci. 470 168
|
[115] |
Wang H, Jian J, Zhang W, Jacob C, Chen A, Wang H and Huang J 2015 Appl. Phys. Lett. 107 102105
|
[116] |
Peter A P, Martens K, Rampelberg G, Toeller M, Ablett J M, Meersschaut J, Cuypers D, Franquet A, Detavernier C, Rueff J P, Schaekers M, Van Elshocht S, Jurczak M, Adelmann C and Radu I P 2015 Adv. Funct. Mater. 25 679
|
[117] |
Wang D, Zhang L, Gu Y, Mehmood M Q, Gong Y, Srivastava A, Jian L, Venkatesan T, Qiu C W and Hong M 2015 Sci. Rep. 5 15020
|
[118] |
Jeong Y G, Han S, Rhie J, Kyoung J S, Choi J W, Park N, Hong S, Kim B J, Kim H T and Kim D S 2015 Nano Lett. 15 6318
|
[119] |
Zhou G, Dai P, Wu J, Jin B, Wen Q, Zhu G, Shen Z, Zhang C, Kang L, Xu W, Chen J and Wu P 2017 Opt. Express 25 17322
|
[120] |
Wang T, He J, Guo J, Wang X, Feng S, Kuhl F, Becker M, Polity A, Klar P J and Zhang Y 2019 Opt. Express 27 20347
|
[121] |
Ding F, Zhong S and Bozhevolnyi S I 2018 Adv. Opt. Mater. 6 1701204
|
[122] |
Wen Q Y, Zhang H W, Yang Q H, Xie Y S, Chen K and Liu Y L 2010 Appl. Phys. Lett. 97 021111
|
[123] |
Zhao Y, Zhang Y, Shi Q, Liang S, Huang W, Kou W and Yang Z 2018 ACS Photon. 5 3040
|
[124] |
Cai H, Chen S, Zou C, Huang Q, Liu Y, Hu X, Fu Z, Zhao Y, He H and Lu Y 2018 Adv. Opt. Mater. 6 1800257
|
[125] |
Zhang Y, Qiao S, Sun L, Shi Q W, Huang W, Li L and Yang Z 2014 Opt. Express 22 11070
|
[126] |
Liu L, Kang L, Mayer T S and Werner D H 2016 Nat. Commun. 7 13236
|
[127] |
Rensberg J, Zhang S, Zhou Y, McLeod A S, Schwarz C, Goldflam M, Liu M, Kerbusch J, Nawrodt R, Ramanathan S, Basov D N, Capasso F, Ronning C and Kats M A 2016 Nano Lett. 16 1050
|
[128] |
Muskens O L, Bergamini L, Wang Y, Gaskell J M, Zabala N, De Groot C H, Sheel D W and Aizpurua J 2016 Light: Sci. Appl. 5 e16173
|
[129] |
Lei D Y, Appavoo K, Ligmajer F, Sonnefraud Y, Haglund R F and Maier S A 2015 ACS Photon. 2 1306
|
[130] |
Wang B X and Wang G Z 2016 IEEE Photon. J. 8 5502408
|
[131] |
Anlage S M 2011 J. Opt. 13 024001
|
[132] |
Jin B, Zhang C, Engelbrecht S, Pimenov A, Wu J, Xu Q, Cao C, Chen J, Xu W, Kang L, Wu P 2010 Opt. Express 18 17504
|
[133] |
Zhang C, Jin B, Han J, Kawayama I, Murakami H, Wu J, Kang L, Chen J, Wu P and Tonouchi M 2013 Appl. Phys. Lett. 102 081121
|
[134] |
Li C, Zhang C, Hu G, Zhou G, Jiang S, Jiang C, Zhu G, Jin B, Kang L, Xu W, Chen J and Wu P 2016 Appl. Phys. Lett. 109 022601
|
[135] |
Gu J, Singh R, Tian Z, Cao W, Xing Q, He M, Zhang J W, Han J, Chen H T and Zhang W 2010 Appl. Phys. Lett. 97 071102
|
[136] |
Jung P, Ustinov A V. and Anlage S M 2014 Supercond. Sci. Technol. 27 073001
|
[137] |
Srivastava Y K and Singh R 2017 J. Appl. Phys. 122 183104
|
[138] |
Zhang C H, Wu J B, Jin B B, Ji Z M, Kang L, Xu W W, Chen J, Tonouchi M and Wu P 2012 Opt. Express 20 42
|
[139] |
Liu X, Guo W, Wang Y, Dai M, Wei L F, Dober B, McKenney C M, Hilton G C, Hubmayr J, Austermann J E, Ullom J N, Gao J and Vissers M R 2017 Appl. Phys. Lett. 111 252601
|
[140] |
Guo W, Liu X, Wang Y, Wei Q, Wei L F, Hubmayr J, Fowler J, Ullom J, Vale L, Vissers M R and Gao J 2017 Appl. Phys. Lett. 110 212601
|
[141] |
Wu J, Jin B, Xue Y, Zhang C, Dai H, Zhang L, Cao C, Kang L, Xu W, Chen J and Wu P 2011 Opt. Express 19 12021
|
[142] |
Chen H T, Yang H, Singh R, O'Hara J F, Azad A K, Trugman S A, Jia Q X and Taylor A J 2010 Phys. Rev. Lett. 105 247402
|
[143] |
Wu J, Jin B, Wan J, Liang L, Zhang Y, Jia T, Cao C, Kang L, Xu W, Chen J and Wu P 2011 Appl. Phys. Lett. 99 161113
|
[144] |
Srivastava Y K, Manjappa M, Cong L, Krishnamoorthy H N S, Savinov V, Pitchappa P and Singh R 2018 Adv. Mater. 30 1801257
|
[145] |
Li C, Wu J, Jiang S, Su R, Zhang C, Jiang C, Zhou G, Jin B, Kang L, Xu W, Chen J and Wu P 2017 Appl. Phys. Lett. 111 092601
|
[146] |
Grady N K, Perkins B G, Hwang H Y, Brandt N C, Torchinsky D, Singh R, Yan L, Trugman D, Trugman S A, Jia Q X, Taylor A J, Nelson K A and Chen H T 2013 New J. Phys. 15 105016
|
[147] |
Müller M M, Maier B, Rockstuhl C and Hochbruck M 2019 Phys. Rev. B 99 075401
|
[148] |
Srivastava Y K 2018 Superconductor Terahertz metamaterials (Ph.D dissertation) (Sigapore: Nanyang Technological University)
|
[149] |
Stav T, Faerman A, Maguid E, Oren D, Kleiner V, Hasman E and Segev M 2018 Science 361 1101
|
[150] |
Ming Y, Zhang W, Tang J, Liu Y, Xia Z, Liu Y and Lu Y Q 2020 Laser Photonics Rev. 14 1900146
|
[151] |
Fan F, Chen S and Chang S J 2017 IEEE J. Sel. Top. Quantum Electron. 23 8500111
|
[152] |
Belotelov V I, Kreilkamp L E, Akimov I A, Kalish A N, Bykov D A, Kasture S, Yallapragada V J, Gopal A V, Grishin A M, Khartsev S I, Nur-E-Alam M, Vasiliev M, Doskolovich L L, Yakovlev D R, Alameh K, Zvezdin A K and Bayer M 2013 Nat. Commun. 4 2128
|
[153] |
Zubritskaya I, Maccaferri N, Inchausti Ezeiza X, Vavassori P and Dmitriev A 2018 Nano Lett. 18 302
|
[154] |
Shimano R, Yumoto G, Yoo J Y, Matsunaga R, Tanabe S, Hibino H, Morimoto T and Aoki H 2013 Nat. Commun. 4 1841
|
[155] |
Chen S, Fan F, Wang X, Wu P, Zhang H and Chang S 2015 Opt. Express 23 1015
|
[156] |
Chen S, Fan F, He X, Chen M and Chang S 2015 Appl. Opt. 54 9177
|
[157] |
Ottomaniello A, Zanotto S, Baldacci L, Pitanti A, Bianco F and Tredicucci A 2018 Opt. Express 26 3328
|
[158] |
Watts C M, Shrekenhamer D, Montoya J, Lipworth G, Hunt J, Sleasman T, Krishna S, Smith D R and Padilla W J 2014 Nat. Photon. 8 605
|
[159] |
Bao L and Cui T J 2020 Microw. Opt. Technol. Lett. 62 9
|
[160] |
Sun D, Lai J W, Ma J C, Wang Q S and Liu J 2017 Chin. Phys. B 26 037801
|
[161] |
Shcherbakov M R, Eilenberger F and Staude I 2019 J. Appl. Phys. 126 085705
|
[162] |
Jiang N, Zhuo X and Wang J 2018 Chem. Rev. 118 3054
|
[163] |
Bekenstein R, Pikovski I, Pichler H, Shahmoon E, Yelin S F and Lukin M D 2020 Nat. Phys. 16 676
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|