CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Temperature-dependent structure and magnetization of YCrO3 compound |
Qian Zhao(赵前)1,2,†, Ying-Hao Zhu(朱英浩)1,3,†, Si Wu(吴思)1,3, Jun-Chao Xia(夏俊超)1,3, Peng-Fei Zhou(周鹏飞)1, Kai-Tong Sun(孙楷橦)1, and Hai-Feng Li(李海峰)1,‡ |
1 Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR 999078, China; 2 State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 3 Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology, Dongguan 523803, China |
|
|
Abstract We have grown a YCrO$_3$ single crystal by the floating-zone method and studied its temperature-dependent crystalline structure and magnetization by x-ray powder diffraction and PPMS DynaCool measurements. All diffraction patterns were well indexed by an orthorhombic structure with space group of $Pbnm$ (No. 62). From 36 K to 300 K, no structural phase transition occurs in the pulverized YCrO$_3$ single crystal. The antiferromagnetic phase transition temperature was determined as $T_\textrm{N} = 141.58(5)$ K by the magnetization versus temperature measurements. We found weak ferromagnetic behavior in the magnetic hysteresis loops below $T_\textrm{N}$. Especially, we demonstrated that the antiferromagnetism and weak ferromagnetism appear simultaneously upon cooling. The lattice parameters ($a$, $b$, $c$, and $V$) deviate downward from the Grüneisen law, displaying an anisotropic magnetostriction effect. We extracted temperature variation of the local distortion parameter $\varDelta$. Compared to the $\varDelta$ value of Cr ions, Y, O1, and O2 ions show one order of magnitude larger $\varDelta$ values indicative of much stronger local lattice distortions. Moreover, the calculated bond valence states of Y and O2 ions have obvious subduction charges.
|
Received: 23 August 2021
Revised: 24 September 2021
Accepted manuscript online: 29 September 2021
|
PACS:
|
61.05.C-
|
(X-ray diffraction and scattering)
|
|
61.50.Ah
|
(Theory of crystal structure, crystal symmetry; calculations and modeling)
|
|
75.50.-y
|
(Studies of specific magnetic materials)
|
|
75.60.Ej
|
(Magnetization curves, hysteresis, Barkhausen and related effects)
|
|
Fund: Authors acknowledge the opening project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure (Grant No. SKL201907SIC), Science and Technology Development Fund, Macao SAR, China (File Nos. 0090/2021/A2 and 0051/2019/AFJ), Guangdong Basic and Applied Basic Research Foundation, China (Guangdong-Dongguan Joint Fund No. 2020B1515120025), University of Macau (MYRG2020-00278-IAPME and EF030/IAPMELHF/2021/GDSTIC), and Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology (Grant No. 2019B121205003). |
Corresponding Authors:
Hai-Feng Li
E-mail: haifengli@um.edu.mo
|
Cite this article:
Qian Zhao(赵前), Ying-Hao Zhu(朱英浩), Si Wu(吴思), Jun-Chao Xia(夏俊超), Peng-Fei Zhou(周鹏飞), Kai-Tong Sun(孙楷橦), and Hai-Feng Li(李海峰) Temperature-dependent structure and magnetization of YCrO3 compound 2022 Chin. Phys. B 31 046101
|
[1] Wang K, Qi Q, Cheng G J and Shi L Q 2014 Chin. Phys. Lett. 31 072801 [2] Zhang H, Luo J, Zhu H T, Liu Q L, Liang J K and Rao G H 2012 Acta Phys. Sin. 61 086101 (in Chinese)[3] Zhang B, An C, Zhou Y, Chen X, Zhou Y, Chen C, Yuan Y and Yang Z 2019 Chin. Phys. B 28 126202 [4] Wang M, Shen W S, Li X D, Li Y C, Zhang G Z, Liu C L, Zhao L, Lü S P, Gao C X and Han Y H 2019 Chin. Phys. B 28 076109 [5] Ardit M, Cruciani G, Dondi M, Merlini M and Bouvier P 2010 Phys. Rev. B 82 064109 [6] Looby J T and Katz L 1954 J. Am. Chem. Soc. 76 6029 [7] Kumar A, Verma A S and Bhardwaj S R 2008 The Open Applied Physics Journal 1 11 [8] Li H F 2008 Synthesis of CMR manganites and ordering phenomena in complex transition metal oxides (Forschungszentrum Juelich GmbH Press) [9] Fiebig M, Lottermoser T, Fröhlich D, Goltsev A V and Pisarev R V 2002 Nature 419 818 [10] Serrao C R, Kundu A K, Krupanidhi S, Waghmare U V and Rao C 2005 Phys. Rev. B 72 220101 [11] Okuda T, Nakanishi K, Miyasaka S and Tokura Y 2001 Phys. Rev. B 63 113104 [12] Cava R, Batlogg B, Krajewski J, Farrow R, Rupp L J, White A, Short K, Peck W and Kometani T 1988 Nature 332 814 [13] Li H, Su Y, Persson J, Meuffels P, Walter J, Skowronek R and Brückel T 2006 J. Phys.:Condens. Matter 19 016003 [14] Li H, Su Y, Persson J, Meuffels P, Walter J, Skowronek R and Brückel T 2007 J. Phys.:Condens. Matter 19 176226 [15] Auciello O, Scott J F and Ramesh R 1998 Physics Today 51 22 [16] Van Aken B B, Palstra T T, Filippetti A and Spaldin N A 2004 Nat. Mater. 3 164 [17] Zhao H J, Ren W, Yang Y R, Íñiguez J, Chen X M and Bellaiche L 2014 Nat. Commun. 5 4021 [18] Chakraborty P and Basu S 2021 Materials Chemistry and Physics 259 124053 [19] Levin E M and McMurdie H F 1975 Phase diagrams for ceramists, 1975 supplement (United States:American Ceramic Society, Inc., Columbus, OH) [20] Sharma Y, Sahoo S, Perez W, Mukherjee S, Gupta R, Garg A, Chatterjee R and Katiyar R S 2014 J. Appl. Phys. 115 183907 [21] Ramesha K, Llobet A, Proffen T, Serrao C and Rao C 2007 J. Phys.:Condens. Matter 19 102202 [22] Sanina V, Khannanov B K, Golovenchits E and Shcheglov M 2018 Physics of the Solid State 60 2532 [23] Geller S and Wood E 1956 Acta Crystallographica 9 563 [24] Jüdin V and Sherman A 1966 Solid State Commun. 4 661 [25] Bertaut E, Bassi G, Buisson G, et al. 1966 J. Appl. Phys. 37 1038 [26] Morishita T and Tsushima K 1981 Phys. Rev. B 24 341 [27] Remeika J 1956 J. Am. Chem. Soc. 78 4259 [28] Grodkiewicz W and Nitti D 1966 Journal of the American Ceramic Society 49 576 [29] Todorov N, Abrashev M, Ivanov V, Tsutsumanova G, Marinova V, Wang Y Q and Iliev M 2011 Phys. Rev. B 83 224303 [30] Li H F, Zhu Y H, Wu S and Tang Z K 2021 China Patent No. CN110904497B [2021-06-11] [31] Zhu Y, Wu S, Tu B, et al. 2020 Phys. Rev. B 101 014114 [32] Wu S, Zhu Y, Gao H, et al. 2020 ACS omega 5 16584 [33] Rodríguez-Carvajal J 1993 Physica B 192 55 [34] Zhu Y, Fu Y, Tu B, et al. 2020 Phys. Rev. Materials 4 094409 [35] Chang H, Guo Y Q, Liang J K and Rao G H 2004 J. Magn. Magn. Mater. 278 306 [36] Li H F, Xiao Y G, Schmitz B, Persson J, Schmidt W, Meuffels P, Roth G and Brückel Th 2012 Sci. Rep. 2 750 [37] Wallace D C 1998 Phys. Rev. B 58 15433 [38] Vočadlo L, Knight K, Price G and Wood I 2002 Physics and Chemistry of Minerals 29 132 [39] Li H F, Su Y, Xiao Y, Persson J, Meuffels P and Brückel T 2009 Euro. Phys. J. B 67 149 [40] Mohri F 2000 Acta Crystallographica Section B:Structural Science 56 626 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|