Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 105204    DOI: 10.1088/1674-1056/aba9c8
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Influence of low ambient pressure on the performance of a high-energy array surface arc plasma actuator

Bing-Liang Tang(唐冰亮), Shan-Guang Guo(郭善广), Hua Liang(梁华)†, and Meng-Xiao Tang(唐孟潇)
1 Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi’an 710038, China
Abstract  

In order to solve the problem of single arc plasma actuator’s failure to suppress the boundary layer separation, the effectiveness of the array surface arc plasma actuator to enhance the excitation intensity is verified by experiment. In this study, an electrical parameter measurement system and high-speed schlieren technology were adopted to delve into the electrical, flow field, and excitation characteristics of the high-energy array surface arc plasma actuator under low ambient pressure. The high-energy array surface arc discharge released considerable heat rapidly; as a result, two characteristic structures were generated, i.e., the precursor shock wave and thermal deposition area. The duration increased with the increase in environmental pressure. The lower the pressure, the wider the thermal deposition area’s influence range. The precursor shock wave exhibited a higher propagation speed at the initial phase of discharge; it tended to decay over time and finally remained at 340 m/s. The lower the environmental pressure, the higher the speed would be at the initial phase. High-energy array surface arc plasma actuator can be employed to achieve effective high-speed aircraft flow control.

Keywords:  low ambient pressure      high-energy      array      surface arc plasma actuator  
Received:  26 May 2020      Revised:  11 July 2020      Accepted manuscript online:  28 July 2020
PACS:  52.50.-b (Plasma production and heating)  
  52.35.Ra (Plasma turbulence)  
  52.30.-q (Plasma dynamics and flow)  
  52.50.Gj (Plasma heating by particle beams)  
Corresponding Authors:  Corresponding author. E-mail: lianghua82702@126.com   

Cite this article: 

Bing-Liang Tang(唐冰亮), Shan-Guang Guo(郭善广), Hua Liang(梁华)†, and Meng-Xiao Tang(唐孟潇) Influence of low ambient pressure on the performance of a high-energy array surface arc plasma actuator 2020 Chin. Phys. B 29 105204

Fig. 1.  

Schematic diagram of discharge circuit and schlieren system.

Fig. 2.  

Schematic diagram of actuator layout (unit: mm).

Fig. 3.  

Discharge characteristics: (a) voltage–current waveform, (b) power waveform.

Fig. 4.  

Discharge waveforms at different DC voltages: (a) voltage waveform, (b) current waveform.

Fig. 5.  

Flow field evolution.

Fig. 6.  

Difference of mean gray value in monitoring area.

Fig. 7.  

The flow field structure of arc discharge under different pressure: (a) t = 40 μs, (b) t = 440 μs, (c) t = 1080 μs, (d) t = 1680 μs.

Fig. 8.  

The flow field structure for different DC voltage under ambient pressure of 20 kPa.

Fig. 9.  

The variation of thermal deposition with pressure.

Fig. 10.  

The velocity of a shockwave under different pressures.

[1]
Curran E T 2001 J. Propul. Power 17 1138 DOI: 10.2514/2.5875
[2]
Liu X H, Lai G W, Wu J 2018 Acta Aerodyn. Sin. 36 196 in Chinese DOI: 10.7638/kqdlxxb-2018.0017
[3]
[4]
Sonoda T, Arima T, Olhofer M, Sendhoff B, Kost F 2004 J. Turbomach 128 1275 DOI: 10.1115/1.2221325
[5]
Küchemann 1965 Prog. Aeronaut. Sci. 6 271 DOI: 10.1016/0376-0421(65)90006-0
[6]
Dolling D S 2001 AIAA J. 39 1517 DOI: 10.2514/2.1476
[7]
Zheltovodov A A, Pimonov E A 2013 Tech. Phys. 58 170 DOI: 10.1134/S1063784213020278
[8]
Selig M S, Smits A J 2016 AIAA J 29 1651 DOI: 10.2514/3.10787
[9]
Schulein E, Zheltovodov A A 2011 Shock Waves 21 383 DOI: 10.1007/s00193-011-0307-1
[10]
Zheltovodov A A, Pimonov E A, Knight D 2007 Shock Waves 17 273 DOI: 10.1007/s00193-007-0111-0
[11]
Li J F, Zhang X B 2020 J. Phys. D: Appl. Phys. 53 235204 DOI: 10.1088/1361-6463/ab7c9d
[12]
Kozato Y, Kikuchi S, Imao S, Kato Y, Okayama K 2016 Int. J. Heat Fluid Flow 62 33 DOI: 10.1016/j.ijheatfluidflow.2016.09.014
[13]
Hahn C, Kearney-Fischer M, Samimy M 2011 Exp. Fluids 51 1591 DOI: 10.1007/s00348-011-1172-5
[14]
Samimy M, Adamovich I, Webb B 2004 Exp. Fluids 37 577 DOI: 10.1007/s00348-004-0854-7
[15]
Bletzinger P, Ganguly B N 2005 J. Phys. D: Appl. Phys. 38 33 DOI: 10.1088/0022-3727/38/4/R01
[16]
Webb N, Clifford C, Samimy M 2011 $41$st AIAA Fluid Dynamics Conference and Exhibit June 27–30,2011 Hawaii, USA 3273 DOI: 10.1088/0022-3727/41/20/205204
[17]
Webb N, Clifford C, Samimy M 2011 41st AIAA Fluid Dynamics Conference and Exhibit June 27–30, 2011 Hawaii, USA 3426 https://xueshu.baidu.com/usercenter/paper/show?paperid=40539fc22af50911323777c3f97320f9&site=xueshu_se
[18]
Balcon N, Benard N, Braud P 2008 J. Phys. D: Appl. Phys. 41 205204 DOI: 10.1088/0022-3727/41/20/205204
[19]
Pafford B, Sirohi J, Raja L L 2013 J. Phys. D: Appl. Phys. 46 485208 DOI: 10.1088/0022-3727/46/48/485208
[20]
Hahn C, Kearney-Fischer M, Samimy M 2011 Exp. Fluids 51 1591 DOI: 10.1007/s00348-011-1172-5
[21]
Sinha A, Alkandry H, Kearney-Fischer M 2012 Phys. Fluids 24 125104 DOI: 10.1063/1.4772191
[22]
Kleinman B B, Bodony D J, Freund J B 2010 Phys. Fluids 22 305
[23]
Leonov S B, Yarantsev D A 2008 J. Propul. Power 24 1168 DOI: 10.2514/1.24585
[24]
Gaitonde D V 2013 Comput. Fluids 85 19 DOI: 10.1016/j.compfluid.2012.09.004
[25]
Glumac N, Elliott G 2007 Opt. Lasers Eng. 45 27 DOI: 10.1016/j.optlaseng.2006.04.002
[26]
Liu J H 2014 Investigations of Pulse Discharge Propagation under Varying Gas Pressure Ph.D. Dissertation WuHan Huazhong University of Science and Technology in Chinese DOI: 10.7666/d.D608718
[27]
Wang Q 2018 Study on The Effect of Plasma Discharge Enhancement in Low Pressure Plasma MS dissertation BeiJing Beijing University Of Technology in Chinese https://xueshu.baidu.com/usercenter/paper/show?paperid=1n2w0250gf140cd0y47c0me0nj119475&site=xueshu_se&hitarticle=1
[28]
Cao X 2015 Investigation of Pulse Discharge under Low Air Pressure Ph.D.Dissertation WuHan Huazhong University of Science and Technology in Chinese https://xueshu.baidu.com/usercenter/paper/show?paperid=b4cad0e521cf8e4f39d884fcddb2c122&site=xueshu_se&hitarticle=1
[29]
Gan T, Wu Y, Sun Z Z, Jin D, Song H M, Jia M 2018 Phys. Fluids 30 055107 DOI: 10.1063/1.5013166
[30]
Sun Q, Cui W, Li Y H, Cheng B Q, Jin D, Li J 2014 Chin. Phys. B 23 075210 DOI: 10.1088/1674-1056/23/7/075210
[31]
Sun Q, Li Y, Cheng B, Cui W, Liu W, Xiao Q 2014 Phys. Lett. A 378 2672 DOI: 10.1016/j.physleta.2014.07.016
[32]
Zong H H, Cui W, Wu Y, Zhang Z B, Liang H, Jia M, Li Y H 2015 Sens. Actuator A-Phys. 222 114 DOI: 10.1016/j.sna.2014.11.022
[33]
Gan T, Jin D, Guo S, Wu Y 2018 Contrib. Plasma Phys. 58 260 DOI: 10.1002/ctpp.2018.58.issue-4
[1] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[2] Spatially modulated scene illumination for intensity-compensated two-dimensional array photon-counting LiDAR imaging
Jiaheng Xie(谢佳衡), Zijing Zhang(张子静), Mingwei Huang(黄明维),Jiahuan Li(李家欢), Fan Jia(贾凡), and Yuan Zhao(赵远). Chin. Phys. B, 2022, 31(9): 090701.
[3] Optical fiber FBG linear sensing systems for the on-line monitoring of airborne high temperature air duct leakage
Qinyu Wang(王沁宇), Xinglin Tong(童杏林), Cui Zhang(张翠), Chengwei Deng(邓承伟), Siyu Xu(许思宇), and Jingchuang Wei(魏敬闯). Chin. Phys. B, 2022, 31(8): 084204.
[4] A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response
Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Mao-Lin Zhang(张茂林), Li-Li Yang(杨莉莉), Shan Li(李山), Zu-Yong Yan(晏祖勇), Shao-Hui Zhang(张少辉), Dao-You Guo(郭道友), Pei-Gang Li(李培刚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(8): 088503.
[5] High power supercontinuum generation by dual-color femtosecond laser pulses in fused silica
Saba Zafar, Dong-Wei Li(李东伟), Acner Camino, Jun-Wei Chang(常峻巍), and Zuo-Qiang Hao(郝作强). Chin. Phys. B, 2022, 31(8): 084209.
[6] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[7] High power semiconductor laser array with single-mode emission
Peng Jia(贾鹏), Zhi-Jun Zhang(张志军), Yong-Yi Chen(陈泳屹), Zai-Jin Li(李再金), Li Qin(秦莉), Lei Liang(梁磊), Yu-Xin Lei(雷宇鑫), Cheng Qiu(邱橙), Yue Song(宋悦), Xiao-Nan Shan(单肖楠), Yong-Qiang Ning(宁永强), Yi Qu(曲轶), and Li-Jun Wang(王立军). Chin. Phys. B, 2022, 31(5): 054209.
[8] Acoustic multipath structure in direct zone of deep water and bearing estimation of tow ship noise of towed line array
Zhi-Bin Han(韩志斌), Zhao-Hui Peng (彭朝晖), Jun Song(宋俊), Lei Meng(孟雷), Xiu-Ting Yang(杨秀庭), and Bing Su(苏冰). Chin. Phys. B, 2022, 31(5): 054301.
[9] Penumbra lunar eclipse observations reveal anomalous thermal performance of Lunakhod 2 reflectors
Tian-Quan Gao(高添泉), Cai-Shi Zhang(张才士), Hong-Chao Zhao(赵宏超), Li-Xiang Zhou(周立祥), Xian-Lin Wu(吴先霖), Hsienchi Yeh(叶贤基), and Ming Li(李明). Chin. Phys. B, 2022, 31(5): 050602.
[10] Ultra-broadband absorber based on cascaded nanodisk arrays
Qi Wang(王琦), Rui Li(李瑞), Xu-Feng Gao(高旭峰), Shi-Jie Zhang(张世杰), Rui-Jin Hong(洪瑞金), Bang-Lian Xu(徐邦联), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2022, 31(4): 040203.
[11] Dynamic vortex Mott transition in triangular superconducting arrays
Zi-Xi Pei(裴子玺), Wei-Gui Guo(郭伟贵), and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2022, 31(3): 037404.
[12] Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film
Xiangxian Wang(王向贤), Jian Zhang(张健), Jiankai Zhu(朱剑凯), Zao Yi(易早), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(2): 024210.
[13] Multiplexing technology based on SQUID for readout of superconducting transition-edge sensor arrays
Xinyu Wu(吴歆宇), Qing Yu(余晴), Yongcheng He(何永成), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2022, 31(10): 108501.
[14] High-energy picosecond single-pass multi-stage optical parametric generator and amplifier
Yang Yu(余洋), Zhao Liu(刘钊), Ke Liu(刘可), Chao Ma(马超), Hong-Wei Gao(高宏伟), Xiao-Jun Wang(王小军), Yong Bo(薄勇), Da-Fu Cui(崔大复), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(1): 014204.
[15] An ultrasonic multi-wave focusing and imaging method for linear phased arrays
Yu-Xiang Dai(戴宇翔), Shou-Guo Yan(阎守国), and Bi-Xing Zhang(张碧星). Chin. Phys. B, 2021, 30(7): 074301.
No Suggested Reading articles found!